Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(26): 4395-4401, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38900497

ABSTRACT

Sensitive and accurate determination of glyphosate (GLYP) is vital for food safety and environmental protection. Herein, a novel electrochemical ratiometric biosensor was designed for the accurate quantification of GLYP through one-step electrodeposition of MWCNTs-Cu MOF films. MWCNTs-Cu MOF nanostructures were directly electro-synthesized in situ on the electrode from the precursor solution. The combination of Cu MOFs with MWCNTs not merely improved the conductivity of MOFs, but also enhanced the sensitivity of the biosensor. Furthermore, Cu sites within Cu MOFs were turned into CuCl to further amplify the current signal and enable the specific recognition of GLYP through competing reactions with the transformation of CuCl into non-electroactive Cu-GLYP. Meanwhile, internal reference molecules of methylene blue (MB) were incorporated to improve the measurement accuracy of GLYP for reducing unpredictable measurement errors aroused by environmental deviations. The ratiometric electrochemical sensor exhibited a high linearity with the logarithmic value of GLYP concentration from 0.5 nM to 400 nM. The detection limit was estimated to be as low as 0.014 nM. Finally, the present sensor with ratiometric signal export was applied for GLYP analysis in real samples with high sensitivity and accuracy. The simplicity and reliability of the ratiometric sensor make it a worthy and powerful tool for food and environmental monitoring. This design strategy also provides an avenue for the development of simple and efficient biosensors for other substances.

SELECTION OF CITATIONS
SEARCH DETAIL
...