Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793630

ABSTRACT

During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.


Subject(s)
DNA, Viral , Herpesvirus 8, Human , Immunity, Innate , Signal Transduction , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Humans , DNA, Viral/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Sarcoma, Kaposi/virology , Nucleotidyltransferases/metabolism , Host-Pathogen Interactions , Animals , Membrane Proteins/metabolism , Nuclear Proteins , Phosphoproteins
2.
J Med Chem ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775356

ABSTRACT

The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 µM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.

3.
World J Gastrointest Surg ; 16(5): 1371-1376, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817278

ABSTRACT

BACKGROUND: Appendectomy is an acute abdominal surgery that is often accompanied by severe abdominal inflammation. Oral probiotics are one of the postoperative treatments for rapid rehabilitation. However, there is a lack of prospective studies on this topic after appendectomy. AIM: To investigate whether the postoperative probiotics can modulate the inflammatory response and restore intestinal function in patients following appendectomy. METHODS: This was a prospective, randomized trial. A total of 60 emergency patients were randomly divided into a control group (n = 30) and a probiotic group (n = 30). Patients in the control group started to drink some water the first day after surgery, and those in the probiotic group were given water supplemented with Bacillus licheniformis capsules for 5 consecutive days postsurgery. The indices of inflammation and postoperative conditions were recorded, and the data were analyzed with RStudio 4.3.2 software. RESULTS: A total of 60 participants were included. Compared with those in the control group, the C-reactive protein (CRP), interleukin 6 and procalcitonin (PCT) levels were significantly lower in the probiotic group at 2 d after surgery (P = 2.224e-05, P = 0.037, and P = 0.002, respectively, all P < 0.05). This trend persisted at day 5 post-surgery, with CRP and PCT levels remaining significantly lower in the probiotic group (P = 0.001 and P = 0.043, both P < 0.05). Furthermore, probiotics resulted in a shorter time to first flatus and a greater percentage of gram-negative bacilli in the feces (P = 0.035, P = 0.028, both P < 0.05). CONCLUSION: Postoperative oral administration of probiotics may modulate the gut microbiota, benefit the recovery of the early inflammatory response, and subsequently enhance recovery after appendectomy.

4.
Emerg Microbes Infect ; 13(1): 2353302, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38753462

ABSTRACT

Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , Disease Models, Animal , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Humans , Lung/virology , Lung/pathology , COVID-19 Drug Treatment , Keratin-18/genetics , Viral Load , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Gene Knock-In Techniques , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female
5.
Front Cell Infect Microbiol ; 14: 1381877, 2024.
Article in English | MEDLINE | ID: mdl-38572316

ABSTRACT

Most of vaccinees and COVID-19 convalescents can build effective anti-SARS-CoV-2 humoral immunity, which helps preventing infection and alleviating symptoms. However, breakthrough viral infections caused by emerging SARS-CoV-2 variants, especially Omicron subvariants, still pose a serious threat to global health. By monitoring the viral infections and the sera neutralization ability of a long-tracked cohort, we found out that the immune evasion of emerging Omicron subvariants and the decreasing neutralization led to the mini-wave of SARS-CoV-2 breakthrough infections. Meanwhile, no significant difference had been found in the infectivity of tested SARS-CoV-2 variants, even though the affinity between human angiotensin-converting enzyme 2 (hACE2) and receptor-binding domain (RBDs) of tested variants showed an increasing trend. Notably, the immune imprinting of inactivated COVID-19 vaccine can be relieved by infections of BA.5.2 and XBB.1.5 variants sequentially. Our data reveal the rising reinfection risk of immune evasion variants like Omicron JN.1 in China, suggesting the importance of booster with updated vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Breakthrough Infections , Cohort Studies , Immune Evasion , Antibodies, Neutralizing , Antibodies, Viral
6.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626263

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Subject(s)
Golgi Apparatus , Herpesvirus 8, Human , Lipoylation , Viral Proteins , Virion , Virus Replication , Herpesvirus 8, Human/physiology , Herpesvirus 8, Human/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/virology , Humans , Virion/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Virus Replication/physiology , HEK293 Cells
7.
Signal Transduct Target Ther ; 9(1): 114, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678055

ABSTRACT

Developing a mucosal vaccine against SARS-CoV-2 is critical for combatting the epidemic. Here, we investigated long-term immune responses and protection against SARS-CoV-2 for the intranasal vaccination of a triple receptor-binding domain (RBD) scaffold protein (3R-NC) adjuvanted with a flagellin protein (KFD) (3R-NC + KFDi.n). In mice, the vaccination elicited RBD-specific broad-neutralizing antibody responses in both serum and mucosal sites sustained at high level over a year. This long-lasting humoral immunity was correlated with the presence of long-lived RBD-specific IgG- and IgA-producing plasma cells, alongside the Th17 and Tfh17-biased T-cell responses driven by the KFD adjuvant. Based upon these preclinical findings, an open labeled clinical trial was conducted in individuals who had been primed with the inactivated SARS-CoV-2 (IAV) vaccine. With a favorable safety profile, the 3R-NC + KFDi.n boost elicited enduring broad-neutralizing IgG in plasma and IgA in salivary secretions. To meet the challenge of frequently emerged variants, we further designed an updated triple-RBD scaffold protein with mutated RBD combinations, which can induce adaptable antibody responses to neutralize the newly emerging variants, including JN.1. Our findings highlight the potential of the KFD-adjuvanted triple-RBD scaffold protein is a promising prototype for the development of a mucosal vaccine against SARS-CoV-2 infection.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Flagellin , SARS-CoV-2 , SARS-CoV-2/immunology , Humans , Flagellin/immunology , Flagellin/genetics , Flagellin/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , Animals , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Female , Antibodies, Viral/immunology , Vaccination , Male , Adult , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin G/immunology , Immunoglobulin G/blood , Immunoglobulin A/immunology , Middle Aged
8.
Sci Bull (Beijing) ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38670853

ABSTRACT

Chronic hepatitis B virus (HBV) infection can lead to advanced liver pathology. Here, we establish a transgenic murine model expressing a basic core promoter (BCP)-mutated HBV genome. Unlike previous studies on the wild-type virus, the BCP-mutated HBV transgenic mice manifest chronic liver injury that culminates in cirrhosis and tumor development with age. Notably, agonistic anti-Fas treatment induces fulminant hepatitis in these mice even at a negligible dose. As the BCP mutant exhibits a striking increase in HBV core protein (HBc) expression, we posit that HBc is actively involved in hepatocellular injury. Accordingly, HBc interferes with Fis1-stimulated mitochondrial recruitment of Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15). HBc may also inhibit multiple Rab GTPase-activating proteins, including Rab7-specific TBC1D15 and TBC1D5, by binding to their conserved catalytic domain. In cells under mitochondrial stress, HBc thus perturbs mitochondrial dynamics and prevents the recycling of damaged mitochondria. Moreover, sustained HBc expression causes lysosomal consumption via Rab7 hyperactivation, which further hampers late-stage autophagy and substantially increases apoptotic cell death. Finally, we show that adenovirally expressed HBc in a mouse model is directly cytopathic and causes profound liver injury, independent of antigen-specific immune clearance. These findings reveal an unexpected cytopathic role of HBc, making it a pivotal target for HBV-associated liver disease treatment. The BCP-mutated HBV transgenic mice also provide a valuable model for understanding chronic hepatitis B progression and for the assessment of therapeutic strategies.

9.
HIV Med ; 25(6): 754-758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494173

ABSTRACT

OBJECTIVES: Dolutegravir + lamivudine (DTG + 3TC) is a first-line regimen for people with HIV. However, there are still concerns about its efficacy in people with tuberculosis (TB)/HIV due to the lack of available evidence and drug-drug interaction with rifampicin. METHODS: A single-centre retrospective observational case series was conducted in Guangxi Zhuang Autonomous Region, China. We included all people with TB/HIV on combined use of once-daily (q.d.) dosing DTG + 3TC and rifampicin (RIF)-containing anti-TB regimens between 2020 and 2022. HIV-RNA, CD4 cell counts were collected and analysed. RESULTS: In all, 21 people with HIV (PWH) were included in this study. All the PWH were treatment-naïve and told to take DTG + 3TC q.d. with food. The median age was 53 years, and 71.43% were male. A total of 71.43% PWH had baseline viral load (VL) > 100 000 copies/mL, and 33.33% had baseline VL greater than 500 000 copies/mL. Only one PWH had CD4 cell count greater than 200 cells/µL, and the median CD4 count was 20 cells/µL. A total of 16 PWH started DTG + 3TC after initiation of the RIF-based anti-TB regimen, and the other five PWH initiated DTG + 3TC before the treatment of TB. All the PWH had at least 24 weeks of follow-up visits and all of the TB treatments were successful. A total of 20 PWH (95.24%) achieved viral suppression (VL <50 copies/mL). All detected viral loads between weeks 24 and 48 were less than 200 copies/mL. Among the PWH who started DTG + 3TC after the initiation of RIF-based anti-TB regimen, all achieved viral suppression by week 24 except the non-suppressed PWH. CD4 counts were greatly improved after antiretroviral treatment: the median CD4 counts were raised from 20 to 171 cells/µL at week 48. No serious adverse events were reported. CONCLUSIONS: This case series preliminarily validates the efficacy of DTG + 3TC q.d. with food when combined with RIF-based anti-TB regimens in people with TB/HIV.


Subject(s)
HIV Infections , Heterocyclic Compounds, 3-Ring , Lamivudine , Oxazines , Pyridones , Rifampin , Tuberculosis , Viral Load , Humans , Male , Retrospective Studies , Lamivudine/therapeutic use , Lamivudine/administration & dosage , Female , Oxazines/therapeutic use , Middle Aged , Heterocyclic Compounds, 3-Ring/therapeutic use , Heterocyclic Compounds, 3-Ring/administration & dosage , Pyridones/therapeutic use , Pyridones/administration & dosage , Rifampin/therapeutic use , Rifampin/administration & dosage , HIV Infections/drug therapy , HIV Infections/complications , Tuberculosis/drug therapy , Adult , CD4 Lymphocyte Count , Viral Load/drug effects , China , Piperazines , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage , Treatment Outcome , Drug Therapy, Combination , Antitubercular Agents/therapeutic use , Antitubercular Agents/administration & dosage
10.
Environ Toxicol ; 39(5): 3014-3025, 2024 May.
Article in English | MEDLINE | ID: mdl-38317294

ABSTRACT

BACKGROUND: Lung cancer is a very common cancer with poor prognosis and high mortality. Circular RNAs (circRNAs) have been confirmed to be related to the occurrence of lung cancer, and circ_0008133 has been found to be possibly related to lung cancer. METHODS: Expression of circ_0008133, miR-760, and mex-3 RNA binding family member A (MEX3A) messenger RNA (mRNA) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony number, migration, and invasion were assessed using cell counting kit-8 (CCK8), colony formation, wound healing, and transwell assays. Glucose consumption and lactate production were detected using commercial kits. Protein expression was measured using western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between miR-760 and circ_0008133 or MEX3A. The effects of circ_0008133 knockdown on tumor growth in vivo were examined by the nude mice expriment. Immunohistochemistry (IHC) assay analyzed Ki-67 expression. RESULTS: Circ_0008133 and MEX3A were markedly boosted in lung cancer tissues and cells. Circ_0008133 knockdown decreased lung cancer cell viability, glucose consumption, lactate production, colony formation, migration, and invasion. In mechanism, circ_0008133 might positively regulate MEX3A expression by sponging miR-760. Additionally, knockdown of circ_0008133 inhibited tumor growth in vivo. CONCLUSION: Circ_0008133 accelerated the progression of lung cancer by promoting glycolysis metabolism through the miR-760/MEX3A axis.


Subject(s)
Lung Neoplasms , MicroRNAs , Animals , Mice , Lung Neoplasms/genetics , Mice, Nude , Glucose , Glycolysis/genetics , Lactic Acid , MicroRNAs/genetics , Cell Proliferation/genetics , Cell Line, Tumor
11.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38197631

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Subject(s)
Core Binding Factor Alpha 3 Subunit , Herpesvirus 8, Human , Latent Infection , Humans , Cell Line, Tumor , Gene Expression Regulation, Viral , Genome, Viral , Herpesvirus 8, Human/physiology , NF-kappa B/metabolism , Virus Activation , Virus Latency , Virus Replication , Core Binding Factor Alpha 3 Subunit/metabolism
12.
Virol Sin ; 39(2): 277-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246238

ABSTRACT

Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Virus Attachment , Virus Internalization , Animals , Humans , Mice , A549 Cells , CHO Cells , Cricetulus , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/pathogenicity , Influenza, Human/genetics , Influenza, Human/metabolism , Orthomyxoviridae Infections/metabolism , Protein Binding , Receptors, Virus/metabolism , Receptors, Virus/genetics , Collagen/genetics , Collagen/metabolism
13.
Int J Biol Macromol ; 260(Pt 1): 129477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232894

ABSTRACT

It reported a porous material prepared from microcrystalline cellulose (MCC), to achieve rapid preparation of adsorbents. The porous material was characterized by several tools including 1H NMR, FTIR, XPS, and SEM. Two adsorbents were prepared and subjected to adsorption experiments. Dye adsorption experiments show that the adsorption driving is electrostatic interactions and the process is chemisorption. The maximum capacity of Microcrystalline cellulose-g-Poly (glycidyl methacrylate)-Tannins (MPT) reached 191.3 (Methylene blue), 123.7 mg g-1 (Rhodamine B), and Microcrystalline cellulose-g-Poly (glycidyl methacrylate)-Lysine (MPL) attained 425.8 (Methylene blue), 480.7 mg g-1 (Methyl orange). The results were followed the pseudo-second-order (PSO) and agreed with the Langmuir fit model. Adsorption-desorption cycling experiments further indicate that the adsorbent possesses outstanding reproducibility. At last, epoxidized bio-porous materials are positive in the preparation of dye adsorbents with critical adsorption properties.


Subject(s)
Cellulose , Coloring Agents , Epoxy Compounds , Methacrylates , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Porosity , Methylene Blue/chemistry , Reproducibility of Results , Cations , Water Pollutants, Chemical/chemistry , Kinetics
14.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215174

ABSTRACT

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Sarcoma, Kaposi , Humans , Immediate-Early Proteins/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Trans-Activators/genetics , Herpesvirus 8, Human/genetics , Virus Replication , Gene Expression Regulation, Viral , Virus Activation , Ubiquitin-Specific Proteases/metabolism
15.
J Pharm Biomed Anal ; 239: 115882, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38071766

ABSTRACT

Based on our experiences in bile acid profiling, this work developed and validated a liquid chromatography electrospray ionization tandem mass spectrometry method to separate endogenous bile acid isomers and quantitatively determine ursodeoxycholic acid (UDCA), glycoursodeoxycholic acid (GUDCA) and tauroursodeoxycholic acid (TUDCA) in human plasma. The separation was performed on a CORTECS C18 column with the mobile phase consisting of 1.0 mM ammonium acetate and acetonitrile-methanol (80:20, v/v). UDCA, GUDCA and TUDCA were detected in the negative mode on a triple-quadrupole mass spectrometer at the ion transitions of m/z 391 > 391, m/z 448 > 74, m/z 498 > 80, respectively. Phosphate buffer was employed as the surrogate matrix to establish the isotope internal standard corrected calibration curves of analytes. The background-method with a linearity range of 10-200 ng/mL was partially validated to determine the endogenous levels of analytes in blank human plasma, which was incorporated into the validation of bioequivalence-method with a linearity range of 50-10000 ng/mL. The bioequivalence (BE)-method was fully validated with special focus on matrix effects, which have been critically evaluated using the precision and accuracy of quality control samples prepared from the blank human plasma of 12 individuals. It is disclosed for the first time that the BE results of UDCA formulation may yield false results when the method is insufficient to separate UDCA from isoursodeoxycholic acid, a microbial metabolite of both endogenous and exogenous UDCA. The present method has established a milestone for the evaluation of UDCA formulations and is expected to provide a valuable reference for the bioanalytical development of endogenous medicinal products.


Subject(s)
Bile Acids and Salts , Ursodeoxycholic Acid , Humans , Therapeutic Equivalency , Chromatography, Liquid/methods , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods
16.
Drug Metab Dispos ; 52(2): 126-134, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38050044

ABSTRACT

Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1ß and C-5ß This work aimed to compare the 1ß- and 5ß-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1ß-hydroxyglycodeoxycholic acid and 5ß-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1ß-hydroxylation, DCA 5ß-hydroxylation, and GDCA 5ß-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1ß-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1ß- and 5ß-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5ß-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1ß-hydroxylation exhibited higher reactivity than DCA 5ß-hydroxylation. It is therefore suggested that DCA 1ß- and 5ß-hydroxylations may serve as alternatives to T 6ß-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1ß- and 5ß-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1ß-hydroxylation exhibited higher metabolic activity than DCA 5ß-hydroxylation, DCA 5ß-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1ß-hydroxylation in individual liver microsomes.


Subject(s)
Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 CYP3A/metabolism , Hydroxylation , Glycodeoxycholic Acid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Microsomes, Liver/metabolism , Midazolam/metabolism
17.
Int J Surg ; 110(2): 1196-1205, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37988416

ABSTRACT

OBJECTIVE: Postoperative staple line leakage (SLL) after sleeve gastrectomy (SG) is a rare but serious complication. Many surgeons routinely test anastomosis with an intraoperative leak test (IOLT) as part of the SG procedure. This meta-analysis aims to determine whether an IOLT plays a role in reducing the rate of postoperative staple line related complications in patients who underwent SG. METHODS: The authors searched the PubMed, Web of science, the Cochrane Library, and Clinical Trials.gov databases for clinical studies assessing the application of IOLT in SG. The primary endpoint was the development of postoperative SLL. Secondary endpoints included the postoperative bleeding, 30 days mortality rates, and 30 days readmission rates. RESULTS: Six studies totaling 469 588 patients met the inclusion criteria. Our review found that the SLL rate was 0.38% (1221/ 324 264) in the IOLT group and 0.31% (453/ 145 324) in the no intraoperative leak test (NIOLT) group. Postoperative SLL decreased in the NIOLT group compared with the IOLT group (OR=1.27; 95% CI: 1.14-1.42, P =0.000). Postoperative bleeding was fewer in the IOLT group than that in the NIOLT group (OR 0.79; 95% CI: 0.72-0.87, P =0.000). There was no significant difference between the IOLT group and the NIOLT group regarding 30 days mortality rates and 30 days readmission rates ( P >0.05). CONCLUSION: IOLT was correlated with an increase in SLL when included as a part of the SG procedure. However, IOLT was associated with a lower rate of postoperative bleeding. Thus, IOLT should be considered in SG in the situation of suspected postoperative bleeding.


Subject(s)
Laparoscopy , Obesity, Morbid , Humans , Anastomotic Leak/diagnosis , Anastomotic Leak/etiology , Anastomotic Leak/prevention & control , Retrospective Studies , Obesity, Morbid/surgery , Surgical Stapling/adverse effects , Postoperative Complications/etiology , Postoperative Complications/surgery , Postoperative Hemorrhage/etiology , Gastrectomy/adverse effects , Gastrectomy/methods , Laparoscopy/methods , Treatment Outcome
18.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055802

ABSTRACT

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/metabolism , Ubiquitin Thiolesterase
19.
BMC Infect Dis ; 23(1): 707, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864131

ABSTRACT

BACKGROUND: This study's objective was to investigate the predictors for severe anemia, severe leukopenia, and severe thrombocytopenia when amphotericin B deoxycholate-based induction therapy is used in HIV-infected patients with talaromycosis. METHODS: A total of 170 HIV-infected patients with talaromycosis were enrolled from January 1st, 2019, to September 30th, 2020. RESULTS: Approximately 42.9%, 20.6%, and 10.6% of the enrolled patients developed severe anemia, severe leukopenia, and severe thrombocytopenia, respectively. Baseline hemoglobin level < 100 g/L (OR = 5.846, 95% CI: 2.765 ~ 12.363), serum creatinine level > 73.4 µmol/L (OR = 2.573, 95% CI: 1.157 ~ 5.723), AST/ALT ratio > 1.6 (OR = 2.479, 95% CI: 1.167 ~ 5.266), sodium level ≤ 136 mmol/liter (OR = 4.342, 95% CI: 1.747 ~ 10.789), and a dose of amphotericin B deoxycholate > 0.58 mg/kg/d (OR = 2.504, 95% CI:1.066 ~ 5.882) were observed to be independent risk factors associated with the development of severe anemia. Co-infection with tuberculosis (OR = 3.307, 95% CI: 1.050 ~ 10.420), and platelet level (per 10 × 109 /L) (OR = 0.952, 95% CI: 0.911 ~ 0.996) were shown to be independent risk factors associated with the development of severe leukopenia. Platelet level < 100 × 109 /L (OR = 2.935, 95% CI: 1.075 ~ 8.016) was identified as the independent risk factor associated with the development of severe thrombocytopenia. There was no difference in progression to severe anemia, severe leukopenia, and severe thrombocytopenia between the patients with or without fungal clearance at 2 weeks. 10 mg on the first day of amphotericin B deoxycholate was calculated to be independent risk factors associated with the development of severe anemia (OR = 2.621, 95% CI: 1.107 ~ 6.206). The group receiving a starting amphotericin B dose (10 mg, 20 mg, daily) exhibited the highest fungal clearance rate at 96.3%, which was significantly better than the group receiving a starting amphotericin B dose (5 mg, 10 mg, 20 mg, daily) (60.9%) and the group receiving a starting amphotericin B dose (5 mg, 15 mg, and 25 mg, daily) (62.9%). CONCLUSION: The preceding findings reveal risk factors for severe anemia, severe leukopenia, and severe thrombocytopenia. After treatment with Amphotericin B, these severe adverse events are likely unrelated to fungal clearance at 2 weeks. Starting amphotericin B deoxycholate at a dose of 10 mg on the first day may increase the risk of severe anemia but can lead to earlier fungal clearance. TRIAL REGISTRATION: ChiCTR1900021195. Registered 1 February 2019.


Subject(s)
Anemia , HIV Infections , Leukopenia , Thrombocytopenia , Humans , Amphotericin B/adverse effects , Antifungal Agents/therapeutic use , Prospective Studies , Induction Chemotherapy , Anemia/chemically induced , Anemia/drug therapy , Leukopenia/chemically induced , Leukopenia/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy
20.
Biomater Adv ; 154: 213651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37827021

ABSTRACT

Tannic acid (TA) shell is of great interest for nanodrug design due to its versatile application such as antioxidant, antibacterial, anti-inflammatory. However, evidence is emerging that TA air oxidation in storage stage and unfavorable interactions of TA with electrolyte or protein in drug delivery could bring great challenge for the structure stability of nanodrug. In this study, a smart TA shell of nanomicelles was constructed through phenolic hydroxyl protection strategy, and the antioxidant capacity of nanomicelles maintain stable after 24 days storage. The phenolic hydroxyl protective tannic acid micelles (PHPTA micelles) show excellent performance for combination delivery of azoramide (Azo), dantrolene (Dan), Trazodone (Tra) in accelerated senescence (SAMP8) mice. This study may pave the way for the fabrication of nanodrugs with stable and smart TA shell for oxidative stress relevant diseases.


Subject(s)
Alzheimer Disease , Nanoparticles , Mice , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Alzheimer Disease/drug therapy , Micelles , Hydroxyl Radical , Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...