Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 96(9): 3246-3253, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28549196

ABSTRACT

This 5-week study was conducted to determine the effects of Enterococcus faecium (SLB 120) on growth performance, blood parameters, relative organ weight, breast muscle meat quality, excreta microbiota shedding, and noxious gas emission in broilers. A total of 816 one-day-old male broilers were allocated to 4 groups with 12 replications (17 broilers/pen) according to body weight (43.2 ± 0.32 g). Dietary treatment groups were: (1) CON, basal diet, (2) T1, CON + 0.05% E. faecium, (3) T2, CON + 0.10% E. faecium, (4) T3, CON + 0.20% E. faecium. From day 1 to 21, dietary E. faecium supplementation showed linear increase (P < 0.05) in gain:feed ratio. From day 21 to 35 and the overall period, dietary E. faecium supplementation showed a linear increase (P < 0.05) in body weight gain and gain:feed ratio. On day 35, dietary E. faecium supplementation showed a linear increase (P < 0.05) in the apparent total tract digestibility of dry matter and nitrogen, and the relative weight of bursa of Fabricius; no differences were observed in white blood cells, red blood cells or lymphocyte counts. Dietary E. faecium supplementation showed a linear decrease (P < 0.05) in excreta E.coli counts on day 7 and 35, while excreta Lactobacillus counts were linearly increased (P < 0.05) on day 35. On day 35, dietary E. faecium supplementation linearly decreased (P < 0.05) excreta NH3, H2S, and total mercaptans emission, but only H2S emission was linearly decreased (P < 0.05) on day 7. In conclusion, the supplementation of E. faecium improved growth performance, the digestibility of dry matter and nitrogen, the relative weight of bursa of Fabricius, and shifted excreta microbiota by increasing Lactobacillus and decreasing E.coli counts, as well as decreased excreta NH3, H2S, and total mercaptans gas emission.


Subject(s)
Air Pollutants/metabolism , Chickens/physiology , Enterococcus faecium/classification , Feces/microbiology , Meat/analysis , Probiotics/pharmacology , Ammonia/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Chickens/blood , Chickens/growth & development , Diet/veterinary , Hydrogen Sulfide/metabolism , Male , Organ Size , Pectoralis Muscles/physiology , Probiotics/administration & dosage , Random Allocation , Sulfhydryl Compounds/metabolism
2.
J Anim Physiol Anim Nutr (Berl) ; 101(6): 1122-1129, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27868250

ABSTRACT

A 12-week trial with 120 [(Landrace×Yorkshire)×Duroc] pigs (45.65 ± 1.93 kg) was conducted to evaluate the effects of Astragalus membranaceus, Codonopsis pilosula and allicin mixture (HM) supplementation on growth performance, nutrient digestibility, faecal microbial shedding, immune response and meat quality in finishing pigs. Pigs were allocated to one of three treatments with 0, 0.025% (HM1) and 0.05% (HM2) HM supplementation in a randomized complete block design according to sex and BW. Each treatment contained 10 replications with four pigs (two barrows and two gilts) per pen. Dietary HM resulted in a higher G:F (p < 0.05) than CON group during weeks 7 to 12 and the overall periods. Pigs fed HM2 diet had higher ADG than pigs fed CON diet. Pigs fed HM2 supplementation diet led to a higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM) and gross energy (GE) than pigs fed CON diet at week 6, while the supplementation of HM led to a higher (p < 0.05) ATTD of DM and GE than pigs fed CON diet at week 12. The faecal E. coli counts were reduced, and Lactobacillus counts were increased by increasing HM supplementation (p < 0.05). Pigs fed HM1 diet had higher (p < 0.05) WBC concentration than those fed CON and HM2 diets at week 6. Pigs fed HM-supplemented diet had higher (p < 0.05) IgG and IgA concentrations than those fed CON diet at week 12. Pigs fed HM diet noted better (p < 0.05) meat colour and redness value than pigs fed CON diet. Pig fed HM2 reduced (p < 0.05) the lightness value compared with CON group. In conclusion, dietary HM supplementation exerted beneficial effects on growth performance, nutrient digestibility, intestinal microbial balance (increased Lactobacillus counts and decreased E. coli counts), immune response and meat quality.


Subject(s)
Animal Feed/analysis , Astragalus propinquus , Codonopsis , Feces/microbiology , Sulfinic Acids/administration & dosage , Swine/growth & development , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Digestion/physiology , Disulfides , Female , Lethal Dose 50 , Male , Meat
3.
Animal ; 11(6): 984-990, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27819219

ABSTRACT

It is well known that energy plays an important role in sow growth and development. Increasing the utilization of lipids will be beneficial to sows. Emulsifiers are substances which stabilize mixtures and prevent oil and water from separating, thereby enhancing the digestion of lipids. This study was conducted to evaluate the effect of dietary emulsifier (lysophospholipids (LPL)) supplementation in diets differing in fat contents on growth performance, nutrient digestibility and milk composition in lactating sows, as well as performance and fecal score in piglets. A total of 32 multiparous sows (Landrace×Yorkshire) were used in a 21-day experiment. On day 110 of gestation, sows were weighed and moved into the farrowing facility, randomly assigned in a 2×2 factorial arrangement according to their BW with two levels of LPL (0 and 30 mg/kg) and two levels of fat (4.75% and 2.38% fat; 13.66 and 13.24 MJ/kg). BW loss and backfat thickness loss were decreased (P<0.05) by LPL supplementation. Backfat thickness at weaning was higher (P<0.05) in sows fed LPL supplementation diets. The apparent total tract digestibility of dry matter, nitrogen, gross energy and crude fat in sows fed LPL diets was increased (P<0.05) compared with those fed non-LPL diets. Sows fed the high-fat diets had higher (P<0.05) milk fat on day 10 and milk lactose on day 20 than those fed the low-fat diets. Milk fat and lactose concentrations in LPL supplementation treatments was increased (P<0.05) compared with non-LPL treatments on day 10 and day 20, respectively. Positive interaction effects (P<0.05) between fat and LPL were observed for milk fat concentration on day 10. In conclusion, LPL addition decreased BW loss and backfat thickness loss, improved nutrient digestibility and milk fat as well as milk lactose concentrations. In addition, there was a complementary positive effect of dietary fat and LPL supplementation on milk fat concentration in lactating sows.


Subject(s)
Dietary Fats/pharmacology , Dietary Supplements , Emulsifying Agents/pharmacology , Lysophospholipids/pharmacology , Milk/chemistry , Swine/physiology , Animal Feed , Animals , Diet/veterinary , Diet, High-Fat/veterinary , Digestion/drug effects , Female , Lactation/drug effects , Parity/drug effects , Pregnancy , Swine/growth & development , Weaning
4.
J Anim Physiol Anim Nutr (Berl) ; 100(6): 1130-1138, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27870289

ABSTRACT

This experiment was conducted to investigate the efficacy of multistrain probiotics in weaning pigs. A total of 125 28-day-old weaning pigs [(Landrace × Yorkshire) × Duroc] with an initial average body weight (BW) of 7.26 ± 0.76 kg were randomly allotted into 5 treatments, 5 replicate pens/treatment with 5 pigs/pen for 42-day experiment. Dietary treatments were as follows: CON, basal diet; PC1, CON + 0.01% multistrain probiotics; PC2, CON + 0.03% multistrain probiotics; PC3, CON + 0.06% multistrain probiotics; PC4, CON + 0.1% multistrain probiotics. On day 14, pigs fed the PC4 diet had higher BW gain than pigs fed the CON diet. On day 42, pigs fed multistrain probiotics supplementation diets had higher BW gain than pigs fed the CON diet. From days 1 to 14, pigs fed the PC2, PC3 and PC4 diets had higher (p < 0.05) ADG than pigs fed the CON diet. From day 15 to 42, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) average daily gain (ADG) and gain: feed ratio (G:F) than pigs fed the CON diet. In the overall period, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) ADG and pigs fed the PC2 and PC4 diets had higher (p < 0.05) G:F than pigs fed the CON diet. On day 42, pigs fed the PC4 diet had higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and gross energy (GE), faecal Lactobacillus counts and lower (p < 0.05) E. coli counts and NH3 emission than pigs fed the CON diet. Pigs fed the multistrain probiotics supplementation diets had lower (p < 0.05) H2 S and total mercaptans emissions than pigs fed the CON diet. Conclusions, dietary supplementation with 0.1% probiotics improved growth performance, nutrition digestibility and intestinal microflora balance and decreased faecal noxious gas emissions in weaning pigs.


Subject(s)
Digestion/physiology , Feces/microbiology , Probiotics/pharmacology , Swine/physiology , Animals , Feces/chemistry , Gases , Probiotics/classification , Swine/blood , Weaning
5.
Theriogenology ; 81(8): 1139-47, 2014 May.
Article in English | MEDLINE | ID: mdl-24612788

ABSTRACT

The aim of this study was to investigate the presence and localization of gonadotropin-releasing hormone receptor-I (GnRHRI), gonadotropin receptors (FSHR, LHR), progesterone receptor (PGR), and progesterone receptor membrane-binding component-I (PGRMCI) in the different developmental stages of the rabbit follicle. The ovaries were collected from four healthy New Zealand white rabbits, and the mRNA expression and protein levels of GnRHRI, FSHR, LHR, PGR, and PGRMCI were examined with real-time PCR and immunohistochemistry. The results showed that GnRHRI, FSHR, LHR, PGR, and PGRMCI mRNA was expressed in the ovary; furthermore, we show cell-type specific and follicular development stage-specific expression of these receptors at the protein level. Specifically, all of the receptors were detected in the oocytes from the primordial to the tertiary follicles and in the granulosa and theca cells from the secondary and tertiary follicles. In the mature follicles, all receptors were primarily localized in the granulosa and theca cells. In addition, LHR was also localized in the granulosa cells from the primordial and primary follicles. With follicular development, the expression level of all of the receptors, except GnRHRI, in the follicles showed a tendency to decrease because the area of the follicle increased sharply. The expression level of GnRHRI, FSHR, and PGR in the granulosa and theca cells showed an increasing trend with ongoing follicular development. Interestingly, the expression level of FSHR in the oocytes obviously decreased from the primary to the tertiary follicles, whereas LHR in the oocytes increased from the secondary to tertiary follicles. In conclusion, the expression of GnRHRI, the gonadotropin receptors, PGR, and PGRMCI decreased from the preantral follicles (primordial, primary, and secondary follicles) to the tertiary follicles. The expression of GnRHRI and LHR in the oocytes increased from the secondary to the tertiary follicles, whereas FSHR decreased from the primary to the tertiary follicles. The expression of GnRHRI and PGR in the granulosa and theca cells increased from the secondary to the mature follicles. These observations suggest that these receptors play roles in follicular development and participate in the regulation of follicular development.


Subject(s)
Ovarian Follicle/chemistry , Ovarian Follicle/growth & development , Receptors, Gonadotropin/analysis , Receptors, LHRH/analysis , Receptors, Progesterone/analysis , Animals , Female , Gene Expression , Granulosa Cells/chemistry , Immunohistochemistry , RNA, Messenger/analysis , Rabbits , Real-Time Polymerase Chain Reaction , Receptors, FSH/analysis , Receptors, FSH/genetics , Receptors, Gonadotropin/genetics , Receptors, LH/analysis , Receptors, LH/genetics , Receptors, LHRH/genetics , Receptors, Progesterone/genetics , Theca Cells/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...