Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 247: 118245, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244966

ABSTRACT

Recovering waste NH3 to be used as a source of nitrogen fertilizer or liquid fuel has recently attracted much attention. Current methods mainly utilize activated carbon or metal-organic frameworks to capture NH3, but are limited due to low NH3 adsorption capacity and high cost, respectively. In this study, novel porous materials that are low cost and easy to synthesize were prepared as NH3 adsorbents by precipitation polymerization with acid optimization. The results showed that adsorption sites (‒COOH, -OH, and lactone) which form chemical adsorption or hydrogen bonds with NH3 were successfully regulated by response surface methods. Correspondingly, the dynamic NH3 adsorption capacity increased from 5.45 mg g-1 to 129 mg g-1, which is higher than most known activated carbon and metal-organic frameworks. Separation performance tests showed that NH3 could also be separated from CO2 and CH4. The findings in this study will advance the industrialization of NH3 polymer adsorbents and provide technical support for the recycling of waste NH3.


Subject(s)
Ammonia , Metal-Organic Frameworks , Ammonia/chemistry , Fertilizers , Nitrogen , Charcoal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...