Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 10(2): 228-239, 2024 02.
Article in English | MEDLINE | ID: mdl-38278952

ABSTRACT

Rapid advances in DNA synthesis techniques have enabled the assembly and engineering of viral and microbial genomes, presenting new opportunities for synthetic genomics in multicellular eukaryotic organisms. These organisms, characterized by larger genomes, abundant transposons and extensive epigenetic regulation, pose unique challenges. Here we report the in vivo assembly of chromosomal fragments in the moss Physcomitrium patens, producing phenotypically virtually wild-type lines in which one-third of the coding region of a chromosomal arm is replaced by redesigned, chemically synthesized fragments. By eliminating 55.8% of a 155 kb endogenous chromosomal region, we substantially simplified the genome without discernible phenotypic effects, implying that many transposable elements may minimally impact growth. We also introduced other sequence modifications, such as PCRTag incorporation, gene locus swapping and stop codon substitution. Despite these substantial changes, the complex epigenetic landscape was normally established, albeit with some three-dimensional conformation alterations. The synthesis of a partial multicellular eukaryotic chromosome arm lays the foundation for the synthetic moss genome project (SynMoss) and paves the way for genome synthesis in multicellular organisms.


Subject(s)
Bryopsida , Epigenesis, Genetic , Chromosomes , Genomics/methods , Bryopsida/genetics , DNA Transposable Elements
2.
Nat Chem Biol ; 17(5): 567-575, 2021 05.
Article in English | MEDLINE | ID: mdl-33664520

ABSTRACT

The discovery of effective therapeutic treatments for cancer via cell differentiation instead of antiproliferation remains a great challenge. Cyclin-dependent kinase 2 (CDK2) inactivation, which overcomes the differentiation arrest of acute myeloid leukemia (AML) cells, may be a promising method for AML treatment. However, there is no available selective CDK2 inhibitor. More importantly, the inhibition of only the enzymatic function of CDK2 would be insufficient to promote notable AML differentiation. To further validate the role and druggability of CDK2 involved in AML differentiation, a suitable chemical tool is needed. Therefore, we developed first-in-class CDK2-targeted proteolysis-targeting chimeras (PROTACs), which promoted rapid and potent CDK2 degradation in different cell lines without comparable degradation of other targets, and induced remarkable differentiation of AML cell lines and primary patient cells. These data clearly demonstrated the practicality and importance of PROTACs as alternative tools for verifying CDK2 protein functions.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Gene Expression Regulation, Leukemic/drug effects , Myeloid Progenitor Cells/drug effects , Proteolysis/drug effects , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Drug Design , Drug Discovery , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Inhibitory Concentration 50 , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Myeloid Progenitor Cells/enzymology , Myeloid Progenitor Cells/pathology , Piperazines/pharmacology , Primary Cell Culture , Pyridines/pharmacology , Pyrimidines/pharmacology , Quinazolines/pharmacology , Signal Transduction , Structure-Activity Relationship , Transcriptome , Triazoles/chemical synthesis
3.
RSC Adv ; 11(61): 38907-38914, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493211

ABSTRACT

DNA methylation and gene silencing play indispensable roles in the epigenetic landscape and gene expression. DNA methyltransferase 1 (DNMT1), a member of the DNMT family, which catalyzes the addition of methyl groups on DNA has been identified to have a close relationship with tumorigenesis. But DNMT1 inhibitors are rare except for the highly toxic nucleoside derivates. Grifolin is a unique natural product which down-regulates DNMT1 and has low toxicity. However, the poor solubility and stability of grifolin limit its application. Herein, we synthesized PEG5-Grifolin as a water-miscible prodrug of grifolin. The half-life of PEG5-Grifolin at 25 °C was considerably extended, revealing excellent stability. Meanwhile, PEG5-Grifolin suppressed tumor growth of by downregulating DNMT1 and reactivating the expression of several tumor suppressor genes in vivo. PEG5-Grifolin might be a promising demethylation agent for DNMT1 associated diseases and benefit much against various types of DNMT1 associated cancer.

4.
J Med Chem ; 62(8): 4056-4073, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30938999

ABSTRACT

Viral infections are increasing and probably long-lasting global risks. In this study, a chemical library was exploited by phenotypic screening to discover new antiviral inhibitors. After optimizations from hit to lead, a novel potent small molecule (RYL-634) was identified, showing excellent broad-spectrum inhibition activity against various pathogenic viruses, including hepatitis C virus, dengue virus, Zika virus, chikungunya virus, enterovirus 71, human immunodeficiency virus, respiratory syncytial virus, and others. The mechanism of action and potential targets of RYL-634 were further explored by the combination of activity-based protein profiling and other techniques. Finally, human dihydroorotate dehydrogenase was validated as the major target of RYL-634. We did not observe any mutant resistance under our pressure selections with RYL-634, and it had a strong synergistic effect with some Food and Drug Administration-approved drugs. Hence, there is great potential for developing new broad-spectrum antivirals based on RYL-634.


Subject(s)
Antiviral Agents/chemistry , Quinolines/chemistry , Small Molecule Libraries/chemistry , Antiviral Agents/pharmacology , Binding Sites , Chikungunya virus/drug effects , Dengue Virus/drug effects , Dihydroorotate Dehydrogenase , Drug Design , Hepacivirus/drug effects , Humans , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Quinolines/pharmacology , Respiratory Syncytial Viruses/drug effects , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Zika Virus/drug effects
5.
Cell Discov ; 5: 10, 2019.
Article in English | MEDLINE | ID: mdl-30729032

ABSTRACT

Although conventional genetic modification approaches for protein knockdown work very successfully due to the increasing use of CRISPR/Cas9, effective techniques for achieving protein depletion in adult animals, especially in large animals such as non-human primates, are lacking. Here, we report a chemical approach based on PROTACs technology that efficiently and quickly knocks down FKBP12 (12-kDa FK506-binding) protein globally in vivo. Both intraperitoneal and oral administration led to rapid, robust, and reversible FKBP12 degradation in mice. The efficiency and practicality of this method were successfully demonstrated in both large and small animals (mice, rats, Bama pigs, and rhesus monkeys). Furthermore, we showed this approach can also be applied to effectively knockdown other target proteins such as Bruton's tyrosine kinase (BTK). This chemical protein knockdown strategy provides a powerful research tool for gene function studies in animals, particularly in large animals, for which gene-targeted knockout strategies may remain unfeasible.

6.
Chem Commun (Camb) ; 55(3): 369-372, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30540295
7.
Org Lett ; 19(5): 972-975, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28229600

ABSTRACT

The development of an efficient method for the construction of biologically relevant sultams is described, which represents the first case of cobalt-promoted C-H/N-H functionalization of sulfonamides with allenes. This newly developed annulation reaction demonstrated good functional group tolerance and excellent regioselectivity. Both terminal monosubstituted allenes and internal disubstituted allenes can be employed to give the desired sultams in good yields. This strategy can be successfully used to build a unique sultam library with novel structural diversity.

8.
Chem Commun (Camb) ; 51(80): 14929-32, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26307027

ABSTRACT

A novel palladium catalyzed hydroxylation of unactivated aliphatic C(sp(3))-H bonds was successfully developed. Different from conventional methods, water serves as the hydroxyl group source in the reaction. This new reaction demonstrates good reactivity and broad functional group tolerance. The C-H hydroxylated products can be readily transformed into various highly valuable chemicals via known transformations. Based on experimental and theoretical studies, a mechanism involving the Pd(II)/(IV) pathway is proposed for this hydroxylation reaction.


Subject(s)
Palladium/chemistry , Catalysis , Hydroxylation , Oxygen/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...