Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 8(10): 2200-2205, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28453934

ABSTRACT

Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. We generalize a Green's function QM/QM embedding method called self-energy embedding theory (SEET) that has the potential to be successfully employed to treat large active spaces. In generalized SEET, active orbitals are grouped into intersecting groups of a few orbitals, allowing us to perform multiple parallel calculations yielding results comparable to the full active-space treatment. We examine generalized SEET on a series of examples and discuss a hierarchy of systematically improvable approximations.

2.
J Chem Theory Comput ; 12(5): 2250-9, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27049642

ABSTRACT

The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green's function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green's function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green's function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.

3.
J Chem Phys ; 143(24): 241102, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26723581

ABSTRACT

The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

4.
J Chem Phys ; 141(17): 174111, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25381506

ABSTRACT

We report an extension of our previous development that incorporated quantum-chemical density matrix renormalization group (DMRG) into the complete active space second-order perturbation theory (CASPT2) [Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011)]. In the previous study, the combined theory, referred to as DMRG-CASPT2, was built upon the use of pseudo-canonical molecular orbitals (PCMOs) for one-electron basis. Within the PCMO basis, the construction of the four-particle reduced density matrix (4-RDM) using DMRG can be greatly facilitated because of simplicity in the multiplication of 4-RDM and diagonal Fock matrix in the CASPT2 equation. In this work, we develop an approach to use more suited orbital basis in DMRG-CASPT2 calculations, e.g., localized molecular orbitals, in order to extend the domain of applicability. Because the multiplication of 4-RDM and generalized Fock matrix is no longer simple in general orbitals, an approximation is made to it using the cumulant reconstruction neglecting higher-particle cumulants. Also, we present the details of the algorithm to compute 3-RDM of the DMRG wavefunction as an extension of the 2-RDM algorithm of Zgid et al. [J. Chem. Phys. 128, 144115 (2008)] and Chan et al. [J. Chem. Phys. 128, 144117 (2008)]. The performance of the extended DMRG-CASPT2 approach was examined for large-scale multireference systems, such as low-lying excited states of long-chain polyenes and isomerization potential of {[Cu(NH3)3]2O2}(2+).

5.
J Chem Theory Comput ; 10(5): 1953-67, 2014 May 13.
Article in English | MEDLINE | ID: mdl-26580523

ABSTRACT

The density matrix renormalization group (DMRG) method is used in conjunction with the complete active space (CAS) procedure, the CAS configuration interaction (CASCI), and the CAS self-consistent field (CASSCF) to evaluate hyperfine coupling constants (HFCCs) for a series of diatomic (2)Σ radicals (BO, CO(+), CN, and AlO) and vinyl (C2H3) radical. The electron correlation effects on the computed HFCC values were systematically investigated using various levels of active space, which were increasingly extended from single valence space to large-size model space entailing double valence and at least single polarization shells. In addition, the core correlation was treated by including the core orbitals in active space. Reasonably accurate results were obtained by the DMRG-CASSCF method involving orbital optimization, while DMRG-CASCI calculations with Hartree-Fock orbitals provided poor agreement of the HFCCs with the experimental values. To achieve further insights into the accuracy of HFCC calculations, the orbital contributions to the total spin density were analyzed at a given nucleus, which is directly related to the FC term and is numerically sensitive to the level of correlation treatment and basis sets. The convergence of calculated HFCCs with an increasing number of renormalized states was also assessed. This work serves as the first study on the performance of the ab initio DMRG method for HFCC prediction.

6.
J Chem Phys ; 138(22): 224108, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23781784

ABSTRACT

A mean-field (or one-particle) theory to represent electron correlation at the level of the second-order Møller-Plesset perturbation (MP2) theory is presented. Orbitals and associated energy levels are given as eigenfunctions and eigenvalues of the resulting one-body (or Fock-like) MP2 Hamiltonian, respectively. They are optimized in the presence of MP2-level correlation with the self-consistent field procedure and used to update the MP1 amplitudes including their denominators. Numerical performance is illustrated in molecular applications for computing reaction energies, applying Koopmans' theorem, and examining the effects of dynamic correlation on energy levels of metal complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...