Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; : e13418, 2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32776382

ABSTRACT

To evaluate the quality changes in large yellow croaker (Pseudosciaena crocea) with ε-polylysine and rosemary extract stored on ice at 4 ± 1°C. About 0.1% ε-polylysine (PL) and 0.2% rosemary extract (RE) were individually or in combination with each other were treated with samples. Samples treated with deionized water were regarded as control check (CK) group. Physicochemical (texture profile analysis (TPA), pH, total volatile basis nitrogen (TVB-N), thiobarbituric acid (TBA)), endogenous enzyme activity (cathepsin B and D), proteolytic degradation (Trichloroacetic Acid (TCA)-soluble peptides and Sodium Salt-polyacrylamide gel electrophoresis (SDS-PAGE)), microbiological (Total viable count (TVC), Shewanella bacteria count, Pseudomonas bacteria count, Psychrophilic bacteria count) and sensory evaluation were conducted during the whole storage. As a result, PL + RE could delay the increase in pH, TVB-N, TBA value, and improve the texture attributes compared with the CK group. In addition, PL + RE could inhibit cathepsin B and D activities, protein degradation, and microbial growth effectively. Moreover, the shelf life of samples could be prolonged at least 4 days when compared with the CK group according to the quality index method (QIM) and physicochemical assay, indicating that the PL + RE treatment could maintain the quality of large yellow croaker more effectively. PRACTICAL APPLICATIONS: The preservation of fish is becoming increasingly important in aquatic products. According to the fence theory, a combination of biopreservatives with different functions could be used to maintain the freshness synergistically. Furthermore, this research indicates that the combination of ε-polylysine and rosemary extract, a promising method for the preservation of aquatic products, could slow down the deterioration of large yellow croaker and prolong its shelf life.

2.
J Food Sci ; 85(5): 1513-1522, 2020 May.
Article in English | MEDLINE | ID: mdl-32243587

ABSTRACT

The objective of this study was to evaluate the antibacterial effect of Chinese wild blueberry extract and its fractions against Listeria monocytogenes, Staphylococcus aureus, Salmonella Enteritidis, and Vibrio parahaemolyticus. Chinese wild blueberry (Vaccinium uliginosum) crude extract (BBE) was obtained using methanol extraction, and sugars plus organic acids (F1), phenolics fraction (F2), and anthocyanins plus proanthocyanidins (F3) fractions were separated using C-18 Sep-Pak columns. The minimal inhibitory concentration and minimal bactericidal concentration of each fractional component were determined using a two-fold-serial dilution method. Nucleic acid leakage (OD260 nm ) and protein release (Bradford protein assay) were determined by spectrophotometry, to evaluate the permeability of the cell membrane. F3 was found to exhibit the greatest antimicrobial activity against the four tested strains, followed by F2, F1, and BBE. V. parahaemolyticus was the most sensitive to the all fractions, followed by S. Enteritidis, L. monocytogenes, and S. aureus. Survival curve analysis showed that the number of bacteria decreased from six log colony-forming units (CFU) to less than 10 CFU after bacteria were treated with fractions for 12 hr, which demonstrated the bactericidal effect of blueberry fractions. Furthermore, when the pathogens were treated with fractions for 2 hr, the OD260 nm and OD595 nm values increased significantly (P < 0.01), which indicated the significant release of nucleic acid and protein. The results from this study indicated that blueberry fractions, especially F3, inhibited the growth of foodborne pathogens by damaging their cell membrane, and may be developed as a natural preservative to prevent and control foodborne pathogens. PRACTICAL APPLICATION: A blueberry crude extract and its sugars plus organic acids, phenolics, and anthocyanins plus proanthocyanidins fractions, inhibited the growth of foodborne pathogens by destroying their cell membrane. Therefore, Chinese wild blueberries have potential as a natural preservative to prevent and control foodborne pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Blueberry Plants/chemistry , Plant Extracts/pharmacology , Anthocyanins/analysis , Anthocyanins/pharmacology , Anti-Bacterial Agents/chemistry , Food Microbiology , Food Preservatives/chemistry , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Microbial Sensitivity Tests , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Proanthocyanidins/analysis , Proanthocyanidins/pharmacology , Salmonella enteritidis/drug effects , Salmonella enteritidis/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...