Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1123636, 2023.
Article in English | MEDLINE | ID: mdl-36969805

ABSTRACT

The lipids of the oyster (Crassostrea hongkongensis) have a special physiological activity function, which is essential to maintain human health. However, comprehensive research on their lipids species and metabolism is not so common. In our study, based on the high-performance liquid chromatography/quadrupole time-of-flight mass spectrometer (HPLC/Q-TOF-MS), the non-targeted lipidomics research of Crassostrea hongkongensis fresh and dried products was determined. Meanwhile, we analyzed its lipid outline, screened the differences between the lipid molecules of Crassostrea hongkongensis fresh and dried products, and determined the lipid metabolic pathway. Results showed that 1,523 lipid molecules were detected, in which polyunsaturated fatty acids mostly existed in such lipids as phosphoglyceride. Through the multivariate statistical analysis, according to the conditions of P < 0.05, FC > 2 or FC < 0.05, and VIP > 1.2, 239 different lipid molecules were selected, including 37 fatty acids (FA), 60 glycerol phospholipids (GP), 20 glycerin (GL), 38 sheath lipids (SP), 31 steroid lipids (ST), 36 polyethylene (PK), and 17 progesterone lipids (PR). Combined with the Kyoto Encyclopedia of Genes and Genomes (KEGG), the differential lipid molecules were analyzed to mainly determine the role of the glycerin phospholipid metabolic pathway. As a whole, the results of this study provide the theoretical basis for the high-value utilization of oysters and are helpful to the development of oysters' physiological activity functions and deep utilization.

2.
An Acad Bras Cienc ; 93(2): e20190551, 2021.
Article in English | MEDLINE | ID: mdl-33729378

ABSTRACT

The functionalization of polysaccharides with synthetic nanopolymers has attracted great attention owing to the applications of this method in many industrial fields. This work aimed to investigate the effect of arsenic trioxide on the functionalization of dextran. Dextran-arsenite nanoparticle formation was induced by microwave with sulfuric acid as a catalyst. Various analytical techniques were used to verify the structure of the nanopolymers. Besides, various reaction conditions, such as dextran concentration, arsenic trioxide concentration and pH, were investigated to determine their impact on particle size. The results indicated that the product was an arsenite-based nanomaterial retaining the basic configuration of dextran and that the product size was positively correlated with pH but negatively correlated with arsenic trioxide concentration. Moreover, the inhibitory effects of the dextran-arsenite nanoparticles on the growth of the human colorectal cancer cell line HCT-116 and human hepatoma carcinoma cell lines Huh-7 and SMMC-7721 were studied. The results showed that the product could inhibit the proliferation of these three tumor cell lines in a dose-dependent manner. Therefore, the product could be a new type of functional nanomaterial for further study on the synthesis, biological activity and development of polysaccharide drugs.


Subject(s)
Antineoplastic Agents , Arsenites , Nanoparticles , Antineoplastic Agents/pharmacology , Arsenic Trioxide , Dextrans , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...