Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Nature ; 629(8014): 1158-1164, 2024 May.
Article in English | MEDLINE | ID: mdl-38750355

ABSTRACT

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Subject(s)
Oryza , Plant Immunity , Plant Proteins , Ubiquitin , Animals , Chitin/metabolism , Homeostasis , Ligands , Oryza/enzymology , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Phosphorylation , Plant Proteins/antagonists & inhibitors , Plant Proteins/immunology , Plant Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Phosphoserine/metabolism , Conserved Sequence
2.
Int J Biol Macromol ; 265(Pt 2): 130859, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490389

ABSTRACT

In this study, crude polysaccharide (LAG-C) and homogeneous arabinogalactan (LAG-W) were isolated from Qinling Larix kaempferi of Shaanxi Province. Bioactivity assays showed that LAG-W and LAG-C enhanced the phagocytic ability, NO secretion, acid phosphatase activity, and cytokine production (IL-6, IL-1ß, and TNF-α) of RAW264.7 macrophages. Notably, LAG-W exhibited a significantly stronger immunomodulatory effect than LAG-C. The primary structure of LAG-W was characterised by chemical methods (monosaccharide composition, methylation analysis, and alkali treatment) and spectroscopic techniques (gas chromatography-mass spectrometry, high-performance liquid chromatography-mass spectrometry, and 1D/2D nuclear magnetic resonance). LAG-W was identified as a 22.08 kilodaltons (kDa) neutral polysaccharide composed of arabinose and galactose at a 1:7.5 molar ratio. Its backbone consisted of repeated →3)-ß-Galp-(1→ residues. Side chains, connected at the O-6 position, were mainly composed of T-ß-Galp-(1→ and T-ß-Galp-(1→6)-ß-Galp-(1→ residues. And it also contained small amounts of T-ß-Arap-(1→, T-α-Araf-(1→6)-ß-Galp-(1→6)-ß-Galp-(1→, and T-α-Araf-(1→3)-α-Araf-(1→6)-ß-Galp-(1→ residues. By structurally and functionally characterising L. kaempferi polysaccharides, this study opens the way for the valorisation of this species.


Subject(s)
Larix , Galactans/pharmacology , Galactans/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Magnetic Resonance Spectroscopy
3.
J Med Chem ; 66(10): 6798-6810, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37154782

ABSTRACT

Trioxacarcin (TXN) A was reported to be an anticancer agent through alkylation of dsDNA. G-quadruplex DNA (G4-DNA) is frequently formed in the promoter regions of oncogenes and the ends of telomerase genes, considered as promising drug targets for anticancer therapy. There are no reports about TXN A interactions with G4-DNA. Here, we tested TXN A's interactions with several G4-DNA oligos with parallel, antiparallel, or hybrid folding, respectively. We demonstrated that TXN A preferred to alkylate one flexible guanine in the loops of parallel G4-DNA. The position of the alkylated guanine is in favor of interactions of G4-DNA with TXN A. The structure of TXN A covalently bound RET G4-DNA indicated that TXN A alkylation on RET G4-DNA stabilizes the G4-DNA conformation. These studies opened a new window of how TXN A interacted with G4-DNA, which might hint a new mode of its function as an anticancer agent.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , DNA/metabolism , Antineoplastic Agents/pharmacology , Guanine/chemistry
4.
Protein Sci ; 31(12): e4506, 2022 12.
Article in English | MEDLINE | ID: mdl-36369672

ABSTRACT

Epilepsy is the results from the imbalance between inhibition and excitation in neural circuits, which is mainly treated by some chemical drugs with side effects. Gain-of-function of BK channels or knockout of its ß4 subunit associates with spontaneous epilepsy. Currently, few reports were published about the efficacy of BK(α + ß4) channel modulators in epilepsy prevention. Charybdotoxin is a non-specific inhibitor of BK and other K+ channels. Here, by nuclear magnetic resonance (NMR) and other biochemical techniques, we found that charybdotoxin might interact with the extracellular loop of human ß4 subunit (i.e., hß4-loop) of BK(α + ß4) channel at a molar ratio 4:1 (hß4-loop vs. charybdotoxin). Charybdotoxin enhanced its ability to prevent K+ current of BK(α + ß4 H101Y) channel. The charybdotoxin Q18F variant selectively reduced the neuronal spiking frequency and increased interspike intervals of BK(α + ß4) channel by π-π stacking interactions between its residue Phe18 and residue His101 of hß4-loop. Moreover, intrahippocampal infusion of charybdotoxin Q18F variant significantly increased latency time of seizure, reduced seizure duration and seizure numbers on pentylenetetrazole-induced pre-sensitized rats, inhibited hippocampal hyperexcitability and c-Fos expression, and displayed neuroprotective effects on hippocampal neurons. These results implied that charybdotoxin Q18F variant could be potentially used for intractable epilepsy treatment by therapeutically targeting BK(α + ß4) channel.


Subject(s)
Charybdotoxin , Epilepsy , Large-Conductance Calcium-Activated Potassium Channels , Animals , Humans , Rats , Charybdotoxin/chemistry , Charybdotoxin/pharmacology , Epilepsy/drug therapy , Epilepsy/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Neurons/metabolism , Peptides/metabolism , Seizures/drug therapy , Seizures/metabolism
5.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 725-735, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35920198

ABSTRACT

APOBEC3G (A3G) is a member of cytosine deaminase family with a variety of innate immune functions. It displays activities against retrovirus and retrotransposon by inhibition of virus infectivity factor (Vif)-deficient HIV-1 replication. The interaction between A3G N-terminal domain and Vif directs the cellular Cullin 5 E3-ubiquitin ligase complex to ubiquitinate A3G, and leads to A3G proteasomal degradation, which is a potential target for anti-HIV drug. Currently, there are very few reports about stable small molecules targeting the interaction between A3G and Vif. In this study, we screened two series of small molecules containing carbamyl sulfamide bond or disulfide bond as bridges of two different aromatic rings. Five asymmetrical disulfides were successfully identified against interaction between A3G and Vif with the IC 50 values close to or smaller than 1 µM, especially, not through covalently binding with A3G or Vif. They restore the A3G expression in the presence of Vif by inhibiting Vif-induced A3G ubiquitination and degradation. This study opens a way to the discovery of new anti-HIV drugs.


Subject(s)
HIV Infections , vif Gene Products, Human Immunodeficiency Virus , APOBEC-3G Deaminase , Cell Line , Cytidine Deaminase/chemistry , Cytidine Deaminase/metabolism , Disulfides , HIV Infections/drug therapy , Humans , vif Gene Products, Human Immunodeficiency Virus/metabolism
6.
Protein Sci ; 31(2): 443-453, 2022 02.
Article in English | MEDLINE | ID: mdl-34792260

ABSTRACT

APOBEC3A (A3A) deaminates deoxycytidine in target motif TC in a single-stranded DNA (we termed it as TC DNA), which mortally mutates viral pathogens and immunoglobulins, and leads to the diversification and lethality of cancers. The crystal structure of A3A-DNA revealed a unique U-shaped recognition mode of target base dC0 . However, when TC DNA was titrated into 15 N-labeled A3A solution, we observed two sets of 1 H-15 N cross-peaks of A3A in HSQC spectra, and two sets of 1 H-1 H cross-peaks of DNA in two-dimensional 13 C,15 N-filtered TOCSY spectra, indicating two different kinds of conformers of either A3A or TC DNA existing in solution. Here, mainly by NMR, we demonstrated that one DNA conformer interacted with one A3A conformer, forming a specific complex A3AS -DNAS in a way almost similar to that observed in the reported crystal A3A-DNA structure, where dC0 inserted into zinc ion binding center. While the other DNA conformer bound with another A3A conformer, but dC0 did not extend into the zinc-binding pocket, forming a nonspecific A3ANS -DNANS complex. The NMR solution structure implied three sites Asn61 , His182 and Arg189 were necessary to DNA recognition. These observations indicate a distinctive way from that reported in X-ray crystal structure, suggesting an unexpected mode of deaminase APOBEC3A to identify target motif TC in DNA in solution.


Subject(s)
Cytidine Deaminase , DNA, Single-Stranded , Cytidine Deaminase/chemistry , Humans , Magnetic Resonance Spectroscopy , Proteins/chemistry
7.
Chem Commun (Camb) ; 56(14): 2099-2102, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32025680

ABSTRACT

G-quadruplexes (G4s) are frequently formed in the promoter regions of oncogenes, considered as promising drug targets for anticancer therapy. Due to high structure similarity of G4s, discovering ligands selectively interacting with only one G4 is extremely difficult. Here, mainly by NMR, we report that colchicine selectively binds to oncogene RET G4-DNA.


Subject(s)
Colchicine/chemistry , Proto-Oncogene Proteins c-ret/chemistry , G-Quadruplexes , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Proto-Oncogene Proteins c-ret/genetics
8.
Sci Rep ; 10(1): 3871, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32099030

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
J Med Chem ; 63(1): 216-230, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31838846

ABSTRACT

Gain-of-function of BK channels or knockout of their ß4 subunit is associated with spontaneous epilepsy. Currently, efficacy of BK (α + ß4) channel modulators in preventing epilepsy was never reported. Here, we show that martentoxin selectively inhibits BK (α + ß4) channels by interaction with the extracellular loop of the BK ß4 subunit (hß4-loop) at a molar ratio 4:1 (hß4-loop vs martentoxin). Residues Glu104, Glu122, Gln124, Lys125, and Glu128 of the hß4-loop form hydrogen bonds with residues Asp5, Glu13, Lys20, Ser24, Gln26, Lys28, and Arg35 of martentoxin, by which martentoxin reduces the neuronal spiking frequency and increases interspike intervals. Intrahippocampal infusion of martentoxin significantly increases the latency time of seizure, reduces seizure duration and seizure numbers on pentylenetetrazole-induced presensitized rats, inhibits hippocampal hyperexcitability and c-Fos expression, and displays neuroprotective effects on hippocampal neurons. These results suggest that the BK (α + ß4) channel is a novel therapeutic target of intractable epilepsy and martentoxin contributes to the rational drug design for epilepsy treatment.


Subject(s)
Anticonvulsants/therapeutic use , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/metabolism , Potassium Channel Blockers/therapeutic use , Scorpion Venoms/therapeutic use , Seizures/prevention & control , Animals , Anticonvulsants/metabolism , GABA-A Receptor Antagonists/pharmacology , Humans , Male , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Pentylenetetrazole/pharmacology , Potassium Channel Blockers/metabolism , Protein Binding , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Scorpion Venoms/metabolism
10.
FEBS Lett ; 593(19): 2790-2799, 2019 10.
Article in English | MEDLINE | ID: mdl-31276192

ABSTRACT

The DNA phosphorothioate modification is a novel physiological variation in bacteria. DndE controls this modification by binding to dsDNA via a mechanism that remains unclear. Structural analysis of the wild-type DndE tetramer suggests that a positively charged region in its center is important for DNA binding. In the present study, we replaced residues G21 and G24 in this region with lysines, which increases the DNA binding affinity but does not affect the DNA degradation phenotype. Structural analysis of the mutant indicates that it forms a new tetrameric conformation and that DndE interacts with DNA as a monomer rather than as a tetramer. A structural model of the DndE-DNA complex, based on its structural homolog P22 Arc repressor, indicates that two flexible loops in DndE are determinants of DNA binding.


Subject(s)
Carbon-Sulfur Lyases/chemistry , DNA-Binding Proteins/chemistry , Escherichia coli Proteins/chemistry , Molecular Docking Simulation , Phosphorothioate Oligonucleotides/metabolism , Amino Acid Substitution , Binding Sites , Carbon-Sulfur Lyases/genetics , Carbon-Sulfur Lyases/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Phosphorothioate Oligonucleotides/chemistry , Protein Binding , Protein Multimerization
12.
Chem Asian J ; 14(13): 2235-2241, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31116511

ABSTRACT

Human APOBEC3G (A3G) inhibits the replication of human immunodeficiency virus-1 by deaminating cytidine at the 3'-end in the target motif 5'-CCC-3' in viral cDNA during reverse transcription. It in vitro deaminates two consecutive cytidines in a 3'->5' order. Although a crystal structure of the A3G catalytic domain (A3G-CD2) with DNA was reported, it is unknown why residues involved in enzymatic reaction are distributed widely. Here, we introduced an iodine atom into the C-5 position of cytidine (dC6 I ) in DNA 5'-ATTC4 C5 C6 I A7 ATT-3' (TCCC6 I ). It switches the deamination sequence preference from CCC to TCC, although small dC6 I deamination was observed. Solution structures of A3G-CD2 in complexes with products DNA TCUC6 I and TCUU6 I indicate that the substrate DNA binds A3G-CD2 in TCC and CCC modes. The dC6 deamination correlates with the 4th base type. The CCC mode favours dC6 deamination, while the TCC mode results in dC5 deamination. These studies present an extensive basis to design inhibitors to impede viral evolvability.


Subject(s)
APOBEC-3G Deaminase/metabolism , Cytidine/metabolism , DNA/metabolism , APOBEC-3G Deaminase/chemistry , Base Sequence , Catalytic Domain , Cytidine/chemistry , DNA/chemistry , Deamination , Humans , Models, Molecular , Protein Binding , Protein Conformation , Proton Magnetic Resonance Spectroscopy
13.
Nucleic Acids Res ; 47(5): 2190-2204, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30759259

ABSTRACT

Nucleic acid mimics of fluorescent proteins can be valuable tools to locate and image functional biomolecules in cells. Stacking between the internal G-quartet, formed in the mimics, and the exogenous fluorophore probes constitutes the basis for fluorescence emission. The precision of recognition depends upon probes selectively targeting the specific G-quadruplex in the mimics. However, the design of probes recognizing a G-quadruplex with high selectivity in vitro and in vivo remains a challenge. Through structure-based screening and optimization, we identified a light-up fluorescent probe, 9CI that selectively recognizes c-MYC Pu22 G-quadruplex both in vitro and ex vivo. Upon binding, the biocompatible probe emits both blue and green fluorescence with the excitation at 405 nm. With 9CI and c-MYC Pu22 G-quadruplex complex as the fluorescent response core, a DNA mimic of fluorescent proteins was constructed, which succeeded in locating a functional aptamer on the cellular periphery. The recognition mechanism analysis suggested the high selectivity and strong fluorescence response was attributed to the entire recognition process consisting of the kinetic match, dynamic interaction, and the final stacking. This study implies both the single stacking state and the dynamic recognition process are crucial for designing fluorescent probes or ligands with high selectivity for a specific G-quadruplex structure.


Subject(s)
Fluorescent Dyes/analysis , G-Quadruplexes , Genes, myc/genetics , Molecular Probes/analysis , Cell Line, Tumor , Cell Survival , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nucleic Acid Conformation
14.
Nucleic Acids Res ; 46(21): 11627-11638, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30285239

ABSTRACT

DNA can form diverse structures, which predefine their physiological functions. Besides duplexes that carry the genetic information, quadruplexes are the most well-studied DNA structures. In addition to their important roles in recombination, replication, transcription and translation, DNA quadruplexes have also been applied as diagnostic aptamers and antidisease therapeutics. Herein we further expand the sequence and structure complexity of DNA quadruplex by presenting a high-resolution crystal structure of DNA1 (5'-AGAGAGATGGGTGCGTT-3'). This is the first quadruplex structure that contains all the internal A-, G-, C-, T-tetrads, A:T:A:T tetrads and bulged nucleotides in one single structure; as revealed by site-specific mutagenesis and biophysical studies, the central ATGGG motif plays important role in the quadruplex formation. Interestingly, our structure also provides great new insights into cation recognition, including the first-time reported Pb2+, by tetrad structures.


Subject(s)
G-Quadruplexes , Circular Dichroism , Crystallography, X-Ray , Metals/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Nucleotide Motifs
15.
Chem Commun (Camb) ; 54(89): 12630-12633, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30351312

ABSTRACT

Spectral overlap makes it difficult to use NMR for mapping the conformational profile of heterogeneous conformational ensembles of macromolecules. Here, we apply a 1H-14N HSQC experiment to monitor the alkaline conformational transitions of yeast iso-1 cytochrome c (ycyt c) at natural isotopic abundance. Trimethylated Lys72 of ycyt c is selectively detected by a 1H-14N HSQC experiment, and used as a probe to trace conformational transitions of ycyt c under alkaline conditions. It was found that at least four different conformers of ycyt c coexisted under alkaline conditions. Besides the native structure, Lys73 or Lys79 coordinated conformers and a partially unfolded state with exposed heme were observed. These results indicate that the method is powerful at simplifying spectra of a trimethylated protein, which makes it possible to study complex conformational transitions of naturally extracted or chemically modified trimethylated protein at natural isotopic abundance.


Subject(s)
Alkalies/metabolism , Cytochromes c1/metabolism , Lysine/analogs & derivatives , Molecular Probes/metabolism , Saccharomyces cerevisiae/chemistry , Alkalies/chemistry , Cytochromes c1/chemistry , Lysine/chemistry , Lysine/metabolism , Magnetic Resonance Spectroscopy , Molecular Probes/chemistry , Nitrogen/chemistry , Protons , Saccharomyces cerevisiae/metabolism
16.
Angew Chem Int Ed Engl ; 57(41): 13475-13479, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30151879

ABSTRACT

Aromatic-fused γ-pyrones are structural features of many bioactive natural products and valid scaffolds for medicinal chemistry. However, the enzymology of their formation has not been completely established. Now it is demonstrated that TxnO9, a CalC-like protein belonging to a START family, functions as an unexpected anthraquinone-γ-pyrone synthase involved in the biosynthesis of antitumor antibiotic trioxacarcin A (TXN-A). Structural analysis by NMR identified a likely substrate/product-binding mode and putative key active sites of TxnO9, which allowed an enzymatic mechanism to be proposed. Moreover, a subset of uncharacterized homologous proteins bearing an unexamined Lys-Thr dyad exhibit the same function. Therefore, the functional assignment and mechanistic investigation of this γ-pyrone synthase elucidated an undescribed step in TXN-A biosynthesis, and the discovery of this new branch of polyketide heterocyclases expands the functions of the START superfamily.


Subject(s)
Aminoglycosides/biosynthesis , Anthraquinones/chemistry , Antibiotics, Antineoplastic/biosynthesis , Ligases/metabolism , Polyketides/metabolism , Pyrones/chemistry , Aminoglycosides/chemistry , Antibiotics, Antineoplastic/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure
17.
J Biol Chem ; 293(23): 8947-8955, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29666187

ABSTRACT

Tumor angiogenesis is mainly regulated by vascular endothelial growth factor (VEGF) produced by cancer cells. It is active on the endothelium via VEGF receptor 2 (VEGFR-2). G-quadruplexes are DNA secondary structures formed by guanine-rich sequences, for example, within gene promoters where they may contribute to transcriptional activity. The proximal promoter of VEGFR-2 contains a G-quadruplex, which has been suggested to interact with small molecules that inhibit VEGFR-2 expression and thereby tumor angiogenesis. However, its structure is not known. Here, we determined its NMR solution structure, which is composed of three stacked G-tetrads containing three syn guanines. The first guanine (G1) is positioned within the central G-tetrad. We also observed that a noncanonical, V-shaped loop spans three G-tetrad planes, including no bridging nucleotides. A long and diagonal loop, which includes six nucleotides, connects reversal double chains. With a melting temperature of 54.51 °C, the scaffold of this quadruplex is stabilized by one G-tetrad plane stacking with one nonstandard bp, G3-C8, whose bases interact with each other through only one hydrogen bond. In summary, the NMR solution structure of the G-quadruplex in the proximal promoter region of the VEGFR-2 gene reported here has uncovered its key features as a potential anticancer drug target.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Design , G-Quadruplexes , Neoplasms/blood supply , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor Receptor-2/genetics , Angiogenesis Inhibitors/chemistry , Base Sequence , G-Quadruplexes/drug effects , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Promoter Regions, Genetic/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
18.
Methods Mol Biol ; 1754: 265-292, 2018.
Article in English | MEDLINE | ID: mdl-29536449

ABSTRACT

Metabolomics aims to quantitatively measure small-molecule metabolites in biological samples, such as bodily fluids (e.g., urine, blood, and saliva), tissues, and breathe exhalation, which reflects metabolic responses of a living system to pathophysiological stimuli or genetic modification. In the past decade, metabolomics has made notable progresses in providing useful systematic insights into the underlying mechanisms and offering potential biomarkers of many diseases. Metabolomics is a complementary manner of genomics and transcriptomics, and bridges the gap between genotype and phenotype, which reflects the functional output of a biological system interplaying with environmental factors. Recently, the technology of metabolomics study has been developed quickly. This review will discuss the whole pipeline of metabolomics study, including experimental design, sample collection and preparation, sample detection and data analysis, as well as mechanism interpretation, which can help understand metabolic effects and metabolite function for living organism in system level.


Subject(s)
Biomedical Research/methods , Bodily Secretions/metabolism , Data Analysis , Metabolomics/methods , Research Design , Biomarkers/analysis , Biomarkers/metabolism , Biomedical Research/instrumentation , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Humans , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Metabolomics/instrumentation , Specimen Handling/instrumentation , Specimen Handling/methods
19.
Sci Rep ; 8(1): 4571, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29545539

ABSTRACT

Large-conductance Ca2+- and voltage-dependent K+ (BK) channels display diverse biological functions while their pore-forming α subunit is coded by a single Slo1 gene. The variety of BK channels is correlated with the effects of BKα coexpression with auxiliary ß (ß1-ß4) subunits, as well as newly defined γ subunits. Charybdotoxin (ChTX) blocks BK channel through physically occluding the K+-conduction pore. Human brain enriched ß4 subunit (hß4) alters the conductance-voltage curve, slows activation and deactivation time courses of BK channels. Its extracellular loop (hß4-loop) specifically impedes ChTX to bind BK channel pore. However, the structure of ß4 subunit's extracellular loop and the molecular mechanism for gating kinetics, toxin sensitivity of BK channels regulated by ß4 are still unclear. To address them, here, we first identified four disulfide bonds in hß4-loop by mass spectroscopy and NMR techniques. Then we determined its three-dimensional solution structure, performed NMR titration and electrophysiological analysis, and found that residue Asn123 of ß4 subunit regulated the gating and pharmacological characteristics of BK channel. Finally, by constructing structure models of BKα/ß4 and thermodynamic double-mutant cycle analysis, we proposed that BKα subunit might interact with ß4 subunit through the conserved residue Glu264(BKα) coupling with residue Asn123(ß4).


Subject(s)
Charybdotoxin/chemistry , Large-Conductance Calcium-Activated Potassium Channels/chemistry , Charybdotoxin/metabolism , Cryoelectron Microscopy , Disulfides/chemistry , Humans , Kinetics , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Mass Spectrometry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
20.
Sci Rep ; 6: 38710, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924850

ABSTRACT

As an AAA-ATPase, Vps4 is important for function of multivesicular bodies (MVB) sorting pathway, which involves in cellular phenomena ranging from receptor down-regulation to viral budding to cytokinesis. The activity of Vps4 is stimulated by the interactions between Vta1 N-terminus (named as Vta1NTD) and Did2 fragment (176-204 aa) (termed as Did2176-204) or Vps60 (128-186 aa) (termed as Vps60128-186). The structural basis of how Vta1NTD binds to Did2176-204 is still unclear. To address this, in this report, the structure of Did2176-204 in complex with Vta1NTD was determined by NMR techniques, demonstrating that Did2176-204 interacts with Vta1NTD through its helix α6' extending over the 2nd and the 3rd α-helices of Vta1NTD microtubule interacting and transport 1 (MIT1) domain. The residues within Did2176-204 helix α6' in the interface make up of an amino acid sequence as E192'xxL195'xxR198'L199'xxL202'R203', identical to type 1 MIT-interacting motif (MIM1) (D/E)xxLxxRLxxL(K/R) of CHMP1A180-196 observed in Vps4-CHMP1A complex structure, indicating that Did2 binds to Vta1NTD through canonical MIM1 interactions. Moreover, the Did2 binding does not result in Vta1NTD significant conformational changes, revealing that Did2, similar to Vps60, enhances Vta1 stimulation of Vps4 ATPase activity in an indirect manner.


Subject(s)
Endosomal Sorting Complexes Required for Transport/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Amino Acid Motifs , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL