Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(9): 12558-12565, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403751

ABSTRACT

Quantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique, QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber. Here, we present for the first time a QKD implementation coexisting with classical optical communication over weakly-coupled FMF using all-fiber mode-selective couplers. The co-propagation of QKD with one 100 Gbps classical data channel at -2.60 dBm launched power is achieved over 86 km FMF with 1.3 kbps real-time secure key generation. Compared with single-mode fiber using wavelength-division multiplexing, given the same fiber-input power, the Raman noise in FMF using the mode-wavelength dual multiplexing is reduced by 86% in average. Our work implements an important approach to the integration between QKD and classical optical communication and previews the compatibility of quantum communications with the next-generation mode division multiplexing networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...