Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2017-21, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-30035517

ABSTRACT

The pyrolysis characteristic of direct coal liquefaction residue (DCLR) was studied with thermo-gravimetric analyzer (TG) coupled with Fourier transform infrared spectrometry (FTIR), which is used to discuss the emitted regulation of gaseous product during pyrolysis process. This research shows that the weight loss process of DCLR can be divided into three stages: the first is before the temperature of 405.10 ℃; stage from 405.10 to 523.83 ℃ which is mainly pyrolysis of high boiling point of oil and asphaltene et al, and the total weight loss of DCLR can up to 40.27% when the temperature reaches 478.45 ℃, meanwhile the mass loss rate is maximum; after 523.83 ℃, the weight loss curve becomes gentle and the total weight loss of DCLR reaches 50.55% , which is due to the secondary cracking of residue and decomposition of mineral matter. The emitted process of gaseous product can be divided into three stages too: the first is the generation of H2O and CO2, the second stage mainly emitted CO2,CH4,CO,H2O and a small quantity of SO2, in which plenty of tar is generated from 458.4 to 791.9 ℃, the final stage mainly generated CO2, CO and H2O. CO2 mainly emitted owing to the cracking of oxygenheterocycle and OCO or other oxygen-containing groups, CO emitted due to cracking of ether and oxygenheterocycle, and CH4 generated as a result of cracking of aliphatic hydrocarbon.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(4): 1121-6, 2016 Apr.
Article in Chinese | MEDLINE | ID: mdl-30052011

ABSTRACT

Spectral analysis is an important and unique advantageous method for the analysis of matter's structure and composition. Aiming to discuss the change characteristic and evolution mechanism of mineral structure of oil shale, kerogen and sime-coke from oil shale pyrolysis under different temperature, the oil shale sample was obtained from Yaojie located in Gansu province, and the oil shale after pyrolysis experiments and acid washing were investigated and analyzed in detail withpolarizing microscope, Fourier transform spectroscopy (FTIR), X-Ray diffraction (XRD) and scanning electron microscope (SEM). The result shows that the mainly minerals of oil shale include quartz, clay and pyrite; kerogen is randomly distributed as mainly strip-shaped or blocky in inorganic minerals. The metamorphic degree of kerogen is higher, and rich in aliphatic structures and aromatic structures. Experiments of oil shale pyrolysis(temperature: 300~1 000 ℃, heating rate: 10 ℃·min-1) with temperature increasing, the composition of mineral begins to dissolve, kaolinite turning into metakaolinite with dehydration at 300 ℃, clay minerals such as kaolinite and montmorillonite completely turn into metakaolinite at 650 ℃. The silica-alumina spinel and amorphous SiO2, generated from the decomposition of metakaolinite at 1 000 ℃, and the amorphous SiO2, tends to react with iron mineral to form relative low melting point mixture on the semi-coke surfaces, such as FeO­Al2O3­SiO2. kerogen break down with increasing temperature, the infrared spectra intensity of C­H band of aliphatic and aromatic is reduced, while the intensity of C­C band aromatic is increased, and more carbonaceous residue as gully-shaped that remains in the mineral matrix after pyrolysis. These results are important for both the study of structure evolution of kerogen and minerals on the process of oil shale pyrolysis and will benefit for the subsequent processing and utilization of shale oil resource.

SELECTION OF CITATIONS
SEARCH DETAIL
...