Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 616: 253-260, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35217241

ABSTRACT

Owing to the severe photogenerated carriers recombination and low oxidation ability, the photocatalytic performance of pristine CsPbBr3 is still unsatisfactory. Herein, melamine foam supported S-scheme WO3/CsPbBr3 heterojunction is successfully synthesized by electrostatic self-assembly. Because of the appropriate energy level positions, an S-scheme charge migration route between CsPbBr3 and WO3 is constructed. Under solar light irradiation, melamine foam assisted WO3/CsPbBr3 exhibits significantly enhanced photocatalytic CO2 reduction performance under liquid H2O medium, and the electron consumption rate (Relectron) reaches to 1225.50 µmol.g-1.h-1, which is 1.49- and 13.7-fold of CsPbBr3 and WO3, respectively, ascribing to the boosted charges transfer and the strengthened redox ability. Furthermore, S-scheme WO3/CsPbBr3 heterojunction also exhibits strong durability, with no noticeable reduction of product yields after four 8-h cycles.

2.
Materials (Basel) ; 14(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071248

ABSTRACT

A magnetically recyclable Ni/NiO/g-C3N4 photocatalyst with significantly enhanced H2 evolution efficiency was successfully synthesized by a simple ethanol-solvothermal treatment. The presence of electronegative g-C3N4 is found to be the key factor for Ni0 formation in ternary Ni/NiO/g-C3N4, which provides anchoring sites for Ni2+ absorption and assembling sites for Ni0 nanoparticle formation. The metallic Ni0, on one side, could act as an electron acceptor enhancing carrier separation and transfer efficiency, and on the other side, it could act as active sites for H2 evolution. The NiO forms a p-n heterojunction with g-C3N4, which also promotes carrier separation and transfer efficiency. The strong magnetic property of Ni/NiO/g-C3N4 allows a good recyclability of catalyst from aqueous solution. The optimal Ni/NiO/g-C3N4 showed a full-spectrum efficiency of 2310 µmol·h-1·g-1 for hydrogen evolution, which is 210 times higher than that of pure g-C3N4. This ethanol solvothermal strategy provides a facile and low-cost synthesis of metal/metal oxide/g-C3N4 for large-scale application.

3.
Environ Technol ; 42(3): 377-387, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31180796

ABSTRACT

Tetracycline hydrochloride as an environmental pollutant is biologically toxic and highly difficult to degrade. To solve this problem, an efficient catalyst IO-TiO2-CdS composite with honeycomb-like three-dimensional (3D) inverse opal TiO2 (IO-TiO2) and cadmium sulphide (CdS) was synthesized and applied in the degradation of tetracycline hydrochloride in this paper. More than 99% of the tetracycline hydrochloride (30 mg/L) can be degraded by IO-TiO2-CdS (30 mg) within 20 min under visible light irradiation. Surprisingly, the naphthol rings can be opened and degraded to alkane with a minimum molecular weight of 60, which is the smallest fragment among all publications. The three-dimensional ordered macroporous (3DOM) structure of IO-TiO2 improves the utilization of light via the slow photon effect. Meanwhile, the addition of CdS enhances the degradation efficiency of tetracycline by broadening the range of absorption spectrum and improving the separation of charge carrier on the catalyst. In addition to the degradation of tetracycline hydrochloride, IO-TiO2-CdS also shows a good degradation efficiency of Rhodamine B (RhB). This work provides a promising approach to construct visible light response photocatalysts with non-noble metal for efficient degradation of wastewater pollutants.


Subject(s)
Nanocomposites , Tetracycline , Cadmium Compounds , Light , Sulfides , Titanium , Wastewater
4.
Acta Biomater ; 100: 255-269, 2019 12.
Article in English | MEDLINE | ID: mdl-31606531

ABSTRACT

Inspired by the wound healing characteristics of the oral mucosa, a biomimetic hydrogel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, we find out that the combination of high, rapid and sequential expression of some growth factors and the sterile-moist microenvironment are crucial for re-epithelialization and precise control of the inflammation process. On the base of our findings, a hydrogel loaded with several functional compounds was prepared to achieve a comprehensive simulation of the oral mucosal trauma microenvironment for skin wound healing. After 7 days treatment, the skin wound area of the treated group was only about 20% of that of the untreated group, and the proportion of collagen type III and type I in the treated group was much higher than that of the untreated group, suggesting lighter scar hyperplasia. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintaining of a sterile and humid environment is expected to have great application prospect in the field of chronic trauma repair and cosmetic surgery. STATEMENT OF SIGNIFICANCE: Long healing time and scar hyperplasia during wound healing have been a serious problem in the past decades of wound healing research. Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Therefore, in recent years, many scholars have begun to study the healing mechanism of oral mucosa, which supports a new inspiration for the study of skin wound repair: whether the injured skin can achieve a rapid scar-free healing effect similar to oral mucosa? Imitating the biological process of oral mucosa wound healing would be a promising therapeutic strategy in wound healing. Therefore, inspired by the wound healing characteristics of the oral mucosa, a biomimetic gel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, the combination of high, rapid and sequential expression of some growth factors and sterile-moist microenvironment was crucial for re-epithelialization and precise control of the inflammation process. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintance of a sterile and humid environment implies its potential use in the field of chronic trauma repair and cosmetic surgery.


Subject(s)
Biomimetic Materials/pharmacology , Hydrogels/pharmacology , Mouth Mucosa/pathology , Skin/pathology , Wound Healing/drug effects , Animals , Gene Expression Regulation/drug effects , Male , Microspheres , Mouth Mucosa/drug effects , Rats, Sprague-Dawley , Skin/drug effects , Wounds and Injuries/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...