Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 337: 122188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710565

ABSTRACT

Growing plants in karst areas tends to be difficult due to the easy loss of water and soil. To enhance soil agglomeration, water retention, and soil fertility, this study developed a physically and chemically crosslinked hydrogel prepared from quaternary ammonium guar gum and humic acid. The results showed that non-covalent dynamic bonds between the two components delayed humic acid release into the soil, with a release rate of only 35 % after 240 h. The presence of four hydrophilic groups (quaternary ammonium, hydroxyl, carboxyl, and carbonyl) in the hydrogel more than doubled the soil's water retention capacity. The interaction between hydrogel and soil minerals (especially carbonate and silica) promoted hydrogel-soil and soil­carbonate adhesion, and the adhesion strength between soil particles was enhanced by 650 %. Moreover, compared with direct fertilization, this degradable hydrogel not only increased the germination rate (100 %) and growth status of mung beans but also reduced the negative effects of excessive fertilization on plant roots. The study provides an eco-friendly, low-cost, and intelligent system for soil improvement in karst areas. It further proves the considerable application potential of hydrogels in agriculture.


Subject(s)
Galactans , Humic Substances , Hydrogels , Mannans , Plant Gums , Quaternary Ammonium Compounds , Soil , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogels/chemistry , Soil/chemistry , Quaternary Ammonium Compounds/chemistry , Fertilizers , Delayed-Action Preparations/chemistry , Germination/drug effects , Water/chemistry
2.
Int J Biol Macromol ; 247: 125707, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37423453

ABSTRACT

Circular Gleditsia sinensis gum, Gleditsia microphylla gum, and tara gum are galactomannans (GMs) with similar mannose/galactose (M/G) molar ratios, which complicates the characterization of physicochemical properties using conventional methods. Herein, the hydrophobic interactions and critical aggregation concentrations (CACs) of the GMs were compared using a fluorescence probe technique, in which the I1/I3 ratio of pyrene indicated polarity changes. With increasing GM concentration, the I1/I3 ratio decreased slightly in dilute solutions below the CAC but decreased sharply in semidilute solutions above the CAC, indicating that the GMs formed hydrophobic domains. However, increases in temperature destroyed the hydrophobic microdomains and increased the CACs. Higher concentrations of salts (SO42-, Cl-, SCN-, and Al3+) promoted hydrophobic microdomain formation, and the CACs in Na2SO4 and NaSCN solutions were lower than those in pure water. Hydrophobic microdomain formation also occurred upon Cu2+ complexation. Although urea addition promoted hydrophobic microdomain formation in dilute solutions, the microdomains were destroyed in semidilute solutions and the CACs increased. The formation or destruction of hydrophobic microdomains depended on the molecular weight, M/G ratio and galactose distribution of GMs. Therefore, the fluorescent probe technique enables the characterization of hydrophobic interactions in GM solutions, which can provide valuable insight into molecular chain conformations.


Subject(s)
Gleditsia , Gleditsia/chemistry , Fluorescent Dyes , Galactose/chemistry , Fluorescence , Mannans/chemistry , Hydrophobic and Hydrophilic Interactions
3.
Polymers (Basel) ; 10(5)2018 May 14.
Article in English | MEDLINE | ID: mdl-30966560

ABSTRACT

Progressive relaxation behavior of syndiotactic polystyrene (sPS) chains in sPS gel was detected in the course of melting via the application of intrinsic fluorescence and fluorescence anisotropy techniques. The melting process included a dissociative process of the network at lower temperature and a relaxation process from helix to worm-like chains at higher temperature. The dynamics of structural relaxation behavior was discovered by intrinsic fluorescence technique, and an abrupt bend emerged at 58 °C on the Arrhenius plot. At temperatures lower than 58 °C, only the dissociation of the helical structure existed and the rate of relaxation from helix to worm-like conformation was negligible. At temperatures higher than 58 °C, the transition from helical chain to worm-like chain was the rate-determining step. The intrinsic fluorescence technique demonstrated its practicability in detecting kinetic processes of sPS/chloroform gel in the course of melting.

4.
J Econ Entomol ; 107(1): 137-43, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24665695

ABSTRACT

The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.


Subject(s)
Bacillus thuringiensis/growth & development , Culture Media , Agaricales , Animals , Culex , Fermentation , Toxicity Tests
5.
Bioresour Technol ; 148: 596-600, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24047726

ABSTRACT

To develop a cost-effective biopesticide, spent mushroom substrate (SMS) extract was studied as a potential carbon source for cultivating Bacillus thuringiensis (Bt). Several pretreatments were compared to determine the optimal method for degrading cellulose to produce reducing sugars, including dilute sulfuric acid (0.5-2.0% v/v, 50-121°C, 1h), sodium hydroxide (0.5-2% w/v, 50-121°C, 1h), calcium hydroxide (0.2-4% w/v, 50-121°C, 1h), and hot water (50-121°C, 1h). Pretreatment was followed by standard enzymatic hydrolysis and fermentation. Results showed that the highest cellulose degradation was obtained using 2% dilute sulfuric acid pretreatment at 121°C for 1h, resulting in a high yield of reducing sugar (284.24 g/kg SMS). Sporulation was also highest using the same pretreatment. Use of SMS is not only an alternative way to commercialize Bt-based biopesticide, but also a potential solution for the environmental pollution associated with accumulation of the spent substrate of the mushroom industry.


Subject(s)
Agaricales/chemistry , Biotechnology/methods , Carbohydrates/chemistry , Fermentation , Waste Products/analysis , Agriculture , Bacillus thuringiensis/drug effects , Calcium Hydroxide/pharmacology , Fermentation/drug effects , Hot Temperature , Hydrolysis/drug effects , Monosaccharides/analysis , Sodium Hydroxide/pharmacology , Spores, Bacterial/drug effects , Sulfuric Acids/pharmacology , Water/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...