Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28713811

ABSTRACT

Application of neural machine interface in individuals with chronic hemiparetic stroke is regarded as a great challenge, especially for classification of the hand opening and grasping during a functional upper extremity movement such as reach-to-grasp. The overall accuracy of classifying hand movements, while actively lifting the paretic arm, is subject to a significant reduction compared to the accuracy when the arm is fully supported. Such a reduction is believed to be due to the expression of flexion synergy, which couples shoulder abduction (SABD) with elbow/wrist and finger flexion, and is common in up to 60% of the stroke population. Little research has been done to develop methods to reduce the impact of flexion synergy on the classification of hand opening and grasping. In this study, we proposed a novel approach to classify hand opening and grasping in the context of the flexion synergy using a wavelet coherence-based filter. We first identified the frequency ranges where the coherence between the SABD muscle and wrist/finger flexion muscles is significant in each participant, and then removed the synergy-induced electromyogram (EMG) component with a subject-specific and muscle-specific coherence-based filter. The new approach was tested in 21 stroke individuals with moderate to severe motor impairments. Employing the filter, 14 participants gained improvement in classification accuracy with a range of 0.1 to 14%, while four showed 0.3 to 1.2% reduction. The remaining three participants were excluded from comparison due to the lack of significant coherence, thus no filters were applied. The improvement in classification accuracy is significant (p = 0.017) when the SABD loading equals 50% of the maximal torque. Our findings suggest that the coherence-based filters can reduce the impact of flexion synergy by removing the synergy-induced EMG component and have the potential to improve the overall classification accuracy of hand movements in individuals with poststroke flexion synergy.

2.
Neurorehabil Neural Repair ; 31(6): 521-529, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28506146

ABSTRACT

BACKGROUND: Up to 60% of individuals with moderate to severe chronic hemiparetic stroke experience excessive involuntary wrist/finger flexion that constrains functional hand movements including hand opening. It's not known how stroke-induced brain injury impacts volitional hand opening and grasping forces as a result of the expression of abnormal coupling between shoulder abduction and wrist/finger flexion or the flexion synergy. OBJECTIVE: The goal of this study is to understand how shoulder abduction loading affects volitional hand opening and grasping forces in individuals with moderate to severe chronic hemiparetic stroke. METHODS: Thirty-six individuals (stroke, 26; control, 10) were recruited for this study. Each participant was instructed to perform maximal hand opening and grasping forces while the arm was either fully supported or lifted with a weight equal to 25% or 50% of the participant's maximal shoulder abduction torque. Hand pentagon area, defined as the area formed by the tips of thumb and fingers, was calculated during hand opening. Forces were recorded during grasping. RESULTS: In individuals with moderate stroke, increasing shoulder abduction loading reduced the ability to maximally open the hand. In individuals with severe stroke, who were not able to open the hand, grasping forces were generated and increased with shoulder abduction loading. Stroke individuals also showed a reduced ability to control volitional grasping forces due to the enhanced expression of flexion synergy. CONCLUSIONS: Shoulder abduction loading reduced the ability to volitionally open the hand and control grasping forces after stroke. Neural mechanisms and clinical implications of these findings are discussed.


Subject(s)
Hand Strength , Paresis/physiopathology , Stroke/physiopathology , Volition , Chronic Disease , Female , Hand/physiopathology , Humans , Male , Middle Aged , Motor Activity , Paresis/complications , Shoulder/physiopathology , Stroke/complications
3.
J Neuroeng Rehabil ; 13(1): 95, 2016 10 29.
Article in English | MEDLINE | ID: mdl-27794362

ABSTRACT

Unsupported or "against-gravity" reaching and hand opening movements are greatly impaired in individuals with hemiparetic stroke. The reduction in reaching excursion and hand opening is thought to be primarily limited by abnormal muscle co-activation of shoulder abductors with distal limb flexors, known as flexion synergy, that results in a loss of independent joint control or joint individuation. Our laboratory employs several methods for quantifying this movement impairment, however the most documented techniques are sophisticated and laboratory-based. Here a series of robotic methods that vary in complexity from comprehensive (laboratory-based) to focused (clinically relevant) are outlined in detail in order to facilitate translation and make recommendations for utilization across the translational spectrum as part of Journal of NeuroEngineering and Rehabilitation thematic series, "Technically-advanced assessments in sensory motor rehabilitation." While these methods focus on our published work utilizing the device, ACT3D, these methods can be duplicated using any mechatronic device with the appropriate characteristics. The common thread and most important aspect of the methods described is addressing the deleterious effects of abduction loading. Distal upper extremity joint performance is directly and monotonically modulated by proximal (shoulder abduction) joint demands. The employment of robotic metrics is the best tool for selectively manipulating shoulder abduction task requirements spanning the individual's full range of shoulder abduction strength. From the series of methods and the concluding recommendations, scientists and clinicians can determine the ideal robotic quantification method for the measurement of the impact of loss of independent joint control on reaching and hand function.


Subject(s)
Paresis/physiopathology , Robotics/methods , Shoulder Joint/physiopathology , Shoulder/physiopathology , Stroke/physiopathology , Upper Extremity/physiopathology , Humans , Paresis/etiology , Stroke/complications , Stroke Rehabilitation
4.
J Hypertens ; 32(4): 806-16, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24509118

ABSTRACT

AIMS: This study hypothesized that the sleep-wake cycle is the major determinant factor affecting blood pressure (BP) dipping in rats and that the sympathovagal imbalance during quiet sleep is associated with the degree of BP fall. METHODS: Polysomnographic recording was performed by telemetry on freely moving Wistar-Kyoto rats over 24  h. Active waking and quiet sleep stages were scored using electroencephalogram and electromyogram. BP dipping was assessed as the percentage decline in SBP from dark active waking to light quiet sleep. About 38% of the rats were classified as dippers (>10% dip) and 62% as nondippers (<10% dip). RESULTS: Among the dipper rats, as compared to dark active waking, the R-R interval and high-frequency power of heart rate variability (a cardiac vagal index) were increased, whereas low-frequency power of blood pressure variability [(BLF), a vascular sympathetic index)] was decreased in light quiet sleep. The sleep-wake cycle rather than the light-dark cycle played the major role in determining BP dipping. The light-dark change in R-R interval, BLF during dark active waking, and baroreflex sensitivity indices during quiet sleep were significantly lower among nondipper rats than among dipper rats. Correlation analysis revealed that BLF during dark active waking as well as high-frequency power of heart rate variability and baroreflex sensitivity indices during light quiet sleep were correlated with the BP dipping percentage. CONCLUSION: This study confirms that the sleep-wake cycle is more important than the light-dark cycle in determining BP dipping. Moreover, lower baroreflex control and parasympathetic activity during quiet sleep as well as lower sympathetic activity during active waking are associated with reduced BP dipping.


Subject(s)
Autonomic Nervous System/physiopathology , Baroreflex/physiology , Blood Pressure/physiology , Animals , Blood Pressure Determination , Circadian Rhythm , Darkness , Electroencephalography , Heart Rate/physiology , Male , Polysomnography , Rats , Rats, Inbred WKY , Sleep/physiology , Sympathetic Nervous System/physiopathology , Telemetry , Time Factors
5.
Auton Neurosci ; 169(2): 116-23, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22727146

ABSTRACT

Chronic autonomic function and sleep architecture changes in patients post-stroke are not well understood. Using wireless polysomnographic recordings, this study aimed to investigate the long-term effects on sleep patterns and autonomic function in free moving rats after middle cerebral artery occlusion (MCAO). The sleep pattern and heart rate variability (HRV) of Wistar-Kyoto rats (WKY) were analyzed. After 7-10days, the rats were divided into two groups: an MCAO group (n=8) and a sham surgery group (n=8). Compared with shams, MCAO rats showed decreased accumulated quiet sleep (QS) time over 24h during the 3rd week. The time percentage, duration and delta power of QS were also significantly decreased in the MCAO group during the dark period. Compared with baseline, there were significant increases in the parasympathetic-associated HRV measures in the sham group, including the total power (TP), high frequency power (HF) and lower frequency power (LF), throughout the post-operative weeks (primarily the 2nd and 3rd weeks), reflecting a developmental increase of parasympathetic modulation; the normalized LF and the LF-HF ratio were unaffected. In great contrast, however, most of the HRV measures in the MCAO group were not significantly changed. Therefore, this study showed that the long-term effects of ischemic stroke injury involve retardation of the establishment of parasympathetic enhancement and disturbance of the normal sleep-wake cycle.


Subject(s)
Brain Ischemia/physiopathology , Infarction, Middle Cerebral Artery/physiopathology , Sleep/physiology , Stroke/physiopathology , Vagus Nerve/physiopathology , Animals , Chronic Disease , Disease Models, Animal , Electrocardiography , Heart/physiopathology , Heart Rate/physiology , Male , Rats , Rats, Inbred WKY
6.
Article in English | MEDLINE | ID: mdl-22255250

ABSTRACT

Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.


Subject(s)
Electromyography/methods , Hand/physiopathology , Algorithms , Humans , Middle Aged , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...