Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607333

ABSTRACT

Unraveling the mechanism of chirality transfer across length scales is crucial to the rational development of functional materials with hierarchical chirality. The key obstacle is the lack of structural information, especially at the mesoscopic level. We report herein the structural identification of helical covalent organic frameworks (heliCOFs) with hierarchical chirality, which integrate molecular chirality, channel chirality, and morphology chirality into one crystalline entity. Specifically, benefiting from the highly ordered structure of heliCOFs, the existence of chiral channels at the mesoscopic level has been confirmed by electron crystallography, and the handedness of these chiral channels has been directly determined through the stereopair imaging technique. Accordingly, the chirality transfer in heliCOFs from microscopic to macroscopic levels could be rationalized with a layer-rotating model that has been supported by both crystal structure analysis and theoretical calculations. Observation of chiral channels in heliCOFs not only provides unprecedented data for the understanding of the chirality transfer process but also sheds new light on the rational construction of highly ordered polymeric materials with hierarchical chirality.

2.
Anal Chem ; 95(31): 11687-11694, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506038

ABSTRACT

Porphyrins easily aggregate due to unfavorable π-π accumulation, causing luminescent quenching in the aqueous phase and subsequently reducing luminescent efficiency. It is a feasible way to immobilize porphyrin molecules through metal-organic framework materials (MOFs). In this study, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) was introduced into the metal-organic skeleton (PCN-224) as a ligand. The result showed that the electrochemiluminescence (ECL) and photoluminescence (PL) efficiency of the MOF skeleton was 8.2 and 6.5 times higher than TCPP, respectively. Impressively, the periodic distribution of porphyrin molecules in the MOF framework can overcome the bottleneck of porphyrin aggregation, resulting in the organic ligand TCPP participating in the electron transfer reaction. Herein, based on the PCN-224, a sandwich-type ECL immunosensor was constructed for the determination of cardiac troponin I (cTnI). It provided sensitive detection of cTnI in the range of 1 fg/mL to 10 ng/mL with a detection limit of 0.34 fg/mL. This work not only innovatively exploited a disaggregation ECL (DIECL) strategy via the crystalline framework of MOF to enhance the PL and ECL efficiency of porphyrin but also provided a promising ECL platform for the ultrasensitive monitoring of cTnI.


Subject(s)
Luminescent Measurements , Glycosides/chemistry , Metal-Organic Frameworks/chemistry , Luminescent Measurements/methods , Troponin I/chemistry , Limit of Detection , Biosensing Techniques/methods , Immunoassay/methods
3.
Angew Chem Int Ed Engl ; 58(28): 9443-9447, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31090130

ABSTRACT

Featuring the simultaneous generation of a library of compounds from a certain intermediate, divergent synthesis has found increasing applications in the construction of natural products and potential medicines. Inspired by this approach, presented herein is a general strategy to introduce functionality, in a divergent manner, into covalent organic frameworks (COFs). This modular protocol includes two stages of covalent assembly, through which functional COFs can be constructed by a three-step transformation of a key platform molecule, such as 4,7-dibromo-2-chloro-1H-benzo[d]imidazole (DBCBI). Constructed herein are four types of chiral COFs (CCOFs) from DBCBI by nucleophilic substitution, Suzuki coupling, and imine formation. The unique array of eight isoframework CCOFs allowed investigation of their catalytic performance and structure-activity relationship in an asymmetric amination reaction.

4.
Org Lett ; 13(18): 4866-9, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21861455

ABSTRACT

The combination of a cinchona-based chiral primary amine and a BINOL-phosphoric acid has been demonstrated as a powerful and synergistic catalyst system for the double Michael addition of isatylidene malononitriles with α,ß-unsaturated ketones, to provide the novel chiral spiro [cyclohexane-1,3'-indoline]-2',3-diones in high yields (88-99%) with excellent diastereo- and enantioselectivities (94:6-99:1 dr's, 95-99% ee's).


Subject(s)
Cyclohexanones/chemical synthesis , Indoles/chemical synthesis , Spiro Compounds/chemical synthesis , Temperature , Amines/chemistry , Catalysis , Cinchona/chemistry , Cyclohexanones/chemistry , Indoles/chemistry , Molecular Structure , Naphthols/chemistry , Oxindoles , Phosphoric Acids/chemistry , Spiro Compounds/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...