Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(1): e2304425, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37955914

ABSTRACT

Recycling cathode materials from spent lithium-ion batteries (LIBs) is critical to a sustainable society as it will relief valuable but scarce recourse crises and reduce environment burdens simultaneously. Different from conventional hydrometallurgical and pyrometallurgical recycling methods, direct regeneration relies on non-destructive cathode-to-cathode mode, and therefore, more time and energy-saving along with an increased economic return and reduced CO2 footprint. This review retrospects the history of direct regeneration and discusses state-of-the-art development. The reported methods, including high-temperature solid-state, hydrothermal/ionothermal, molten salt thermochemistry, and electrochemical method, are comparatively introduced, targeting at illustrating their underlying regeneration mechanism and applicability. Further, representative repairing and upcycling studies on wide-applied cathodes, including LiCoO2 (LCO), ternary oxides, LiFePO4 (LFP), and LiMn2 O4 (LMO), are presented, with an emphasis on milestone cases. Despite these achievements, there remain several critical issues that shall be addressed before the commercialization of the mentioned direct regeneration methods.

2.
Chem Commun (Camb) ; 58(50): 7074-7077, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35662300

ABSTRACT

We report the first example of a perovskite sulfate [Na3(H2O)]Fe(SO4)3. Further structure modulation, by dimensional reduction or ligand extension, has resulted in two related layered perovskite-like compounds Na6Fe(SO4)4 and Na12Fe3(SO4)6F8. Taken together, these results open up a more general strategy for the future design of more complex perovskite-related materials.

3.
Inorg Chem ; 59(23): 16936-16943, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33197313

ABSTRACT

Transition-metal oxalates have wide applications in magnetics, photoemission, electrochemistry, etc. Herein, using hydrothermal reactions, five cobalt(II) oxalates, Na2Co2(C2O4)3·2H2O (I), Na2Co(C2O4)2·8H2O (II), KLi3Co(C2O4)3 (III), Li4Co(C2O4)3 (IV), and (NH4)2Co2(C2O4)F4 (V) have been synthesized, and their structures are determined from single-crystal X-ray diffraction or Rietveld refinement of powder X-ray diffraction data. Notably, IV and V are identified for the first time. The structures of these cobalt oxalates are versatile, covering 0D, 1D, 2D, and 3D frameworks, while the coordination environments of Co2+ centers are uniquely distorted octahedra. As representative examples, I and III are investigated as cathode materials for secondary batteries. Both exhibited electrochemical activity despite large cell polarization. The present study enriches the transition-metal oxalate family and provides new options for energy storage materials.

4.
Angew Chem Int Ed Engl ; 59(24): 9255-9262, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-31976627

ABSTRACT

Low-cost electrochemical energy storage systems (EESSs) are urgently needed to promote the application of renewable energy sources such as wind and solar energy. In analogy to lithium-ion batteries, the cost of EESSs depends mainly on charge-carrier ions and redox centers in electrodes, and their performance is limited by positive electrodes. In this context, this Minireview evaluates several EESS candidates and summarizes the known mixed polyanionic compounds (MPCs)-a family with robust frameworks and large channels for ion storage and migration. After comprehensive analysis, it is pointed out that a deeper exploration of MPCs may generate numerous novel crystallographically interesting compounds and excellent cathode materials for low-cost energy storage applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...