Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 277: 116399, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677070

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.


Subject(s)
Alkanesulfonates , Apoptosis , Endocrine Disruptors , Reactive Oxygen Species , Sexual Maturation , Uterus , Animals , Female , Rats , Apoptosis/drug effects , Cell Proliferation/drug effects , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism , Sexual Maturation/drug effects , Uterus/drug effects , Alkanesulfonates/toxicity
2.
J Hazard Mater ; 466: 133587, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38280329

ABSTRACT

Microplastics (MPs) have been shown to adsorb heavy metals and serve as vehicles for their environmental transport. To date, insufficient studies have focused on enterohepatic injury in mice co-exposed to both MPs and cadmium (Cd). Here, we report that Cd adsorption increased the surface roughness and decreased the monodispersity of PS-MPs. Furthermore, exposure to both PS-MPs and Cd resulted in a more severe toxic effect compared to single exposure, with decreased body weight gain, shortened colon length, and increased colonic and hepatic inflammatory response observed. This can be attributed to an elevated accumulation of Cd resulting from increased gut permeability, coupled with the superimposed effects of oxidative stress. In addition, using 16 S sequencing and fecal microbiota transplantation, it was demonstrated that gut microbiota dysbiosis plays an essential role in the synergistic toxicity induced by PS-MPs and Cd in mice. This study showed that combined exposure to MPs and Cd induced more severe intestinal and liver damage in mice compared to individual exposure, and provided a new perspective for a more systematic risk assessment process related to MPs exposure.


Subject(s)
Cadmium , Metals, Heavy , Animals , Mice , Cadmium/toxicity , Microplastics/toxicity , Plastics/toxicity , Metals, Heavy/toxicity , Oxidative Stress , Polystyrenes/pharmacology
3.
Food Funct ; 14(23): 10535-10548, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37947440

ABSTRACT

Alcoholic liver disease is a prevalent condition resulting from excessive alcohol consumption, characterized by hepatic lipid accumulation and inflammation. This study delved into the protective effects and mechanisms of L. plantarum P101 on alcoholic liver injury in mice. As a result, L. plantarum P101 intervention reduced ALT and AST release, indicative of hepatocyte injury alleviation, while enhancing the activity of the antioxidant enzymes SOD and CAT. A reduction in pro-inflammatory cytokine TNF-α and an increase in anti-inflammatory cytokine IL-10 levels were observed in the L. plantarum P101-intervened mouse liver, signifying reduced inflammation within the mice. Furthermore, L. plantarum P101 intervention altered the gut microbial composition, primarily marked by an increase in Bacteroidota abundance, along with significant enrichment of beneficial bacteria, including Coprostanoligenes, Blautia and Lactiplantibacillus. Correlation analysis unveiled connections between serum tryptophan metabolites and the altered gut microbiota genera, suggesting that gut microbiota-driven effects may extend to extraintestinal organs through their metabolites. Intriguingly, serum indole-3-acetamide (IAM) was elevated by L. plantarum P101-regulated gut microbiota. Subsequently, the role of IAM in ameliorating alcoholic injury was explored using HepG2 cells, where it bolstered cell viability and attenuated EtOH-induced oxidative damage. Concomitantly, IAM activated the gene and protein expression of AhR in cells. Likewise, hepatic AhR expression in mice subjected to L. plantarum P101 significantly up-regulated, possibly instigated by gut microbiota-mediated IAM. Collectively, L. plantarum P101 orchestrates a modulation of gut microbiota and its metabolites, particularly IAM, to activate AhR, thereby alleviating alcoholic liver injury.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus plantarum , Animals , Mice , Inflammation , Cytokines , Liver
SELECTION OF CITATIONS
SEARCH DETAIL
...