Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(34): 35671-8, 2004 Aug 20.
Article in English | MEDLINE | ID: mdl-15159403

ABSTRACT

Although dopamine D1 and D2 receptors belong to distinct subfamilies of dopamine receptors, several lines of evidence indicate that they are functionally linked. However, a mechanism for this linkage has not been elucidated. In this study, we demonstrate that agonist stimulation of co-expressed D1 and D2 receptors resulted in an increase of intracellular calcium levels via a signaling pathway not activated by either receptor alone or when only one of the co-expressed receptors was activated by a selective agonist. Calcium signaling by D1-D2 receptor co-activation was abolished following treatment with a phospholipase C inhibitor but not with pertussis toxin or inhibitors of protein kinase A or protein kinase C, indicating coupling to the G(q) pathway. We also show, by co-immunoprecipitation from rat brain and from cells co-expressing the receptors, that D1 and D2 receptors are part of the same heteromeric protein complex and, by immunohistochemistry, that these receptors are co-expressed and co-localized within neurons of human and rat brain. This demonstration that D1 and D2 receptors have a novel cellular function when co-activated in the same cell represents a significant step toward elucidating the mechanism of the functional link observed between these two receptors in brain.


Subject(s)
Calcium Signaling , Receptor Cross-Talk , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Type C Phospholipases/metabolism , Animals , Benzazepines/pharmacology , Brain/metabolism , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line , Dopamine Agonists/pharmacology , Estrenes/pharmacology , Humans , Immunohistochemistry , Pyrrolidinones/pharmacology , Quinpirole/pharmacology , Rats , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Type C Phospholipases/antagonists & inhibitors
2.
J Biol Chem ; 279(9): 7901-8, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-14645236

ABSTRACT

Signaling of the apelin, angiotensin, and bradykinin peptides is mediated by G protein-coupled receptors related through structure and similarities of physiological function. We report nuclear expression as a characteristic of these receptors, including a nuclear localization for the apelin receptor in brain and cerebellum-derived D283 Med cells and the AT(1) and bradykinin B(2) receptors in HEK-293T cells. Immunocytochemical analyses revealed the apelin receptor with localization in neuronal nuclei in cerebellum and hypothalamus, exhibiting expression in neuronal cytoplasm or in both nuclei and cytoplasm. Confocal microscopy of HEK-293T cells revealed the majority of transfected cells displayed constitutive nuclear localization of AT(1) and B(2) receptors, whereas apelin receptors did not show nuclear localization in these cells. The majority of apelin receptor-transfected cerebellum D283 Med cells showed receptor nuclear expression. Immunoblot analyses of subcellular-fractionated D283 Med cells demonstrated endogenous apelin receptor species in nuclear fractions. In addition, an identified nuclear localization signal motif in the third intracellular loop of the apelin receptor was disrupted by a substituted glutamine in place of lysine. This apelin receptor (K242Q) did not exhibit nuclear localization in D283 Med cells. These results demonstrate the following: (i) the apelin receptor exhibits nuclear localization in human brain; (ii) distinct cell-dependent mechanisms for the nuclear transport of apelin, AT(1), and B(2) receptors; and (iii) the disruption of a nuclear localization signal sequence disrupts the nuclear translocation of the apelin receptor. This discovery of apelin, AT(1), and B(2) receptors with agonist-independent nuclear translocation suggests major unanticipated roles for these receptors in cell signaling and function.


Subject(s)
Cell Nucleus/chemistry , Receptor, Angiotensin, Type 1/analysis , Receptor, Bradykinin B2/analysis , Receptors, G-Protein-Coupled/analysis , Animals , Apelin Receptors , Brain/ultrastructure , COS Cells , Cell Fractionation , Cell Line , Cerebellum/ultrastructure , Chlorocebus aethiops , Cytoplasm/chemistry , Embryo, Mammalian , Gene Expression , Green Fluorescent Proteins , Humans , Hypothalamus/ultrastructure , Immunohistochemistry , Kidney , Luminescent Proteins/genetics , Microscopy, Confocal , Neurons/ultrastructure , Protein Sorting Signals , Rats , Receptor, Angiotensin, Type 1/genetics , Receptor, Bradykinin B2/genetics , Receptors, G-Protein-Coupled/genetics , Recombinant Fusion Proteins , Signal Transduction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...