Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 227: 105907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772503

ABSTRACT

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.


Subject(s)
Antiviral Agents , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Animals , Humans , Virus Replication/drug effects , Respiratory Syncytial Virus, Human/drug effects , Sheep , Drug Resistance, Viral , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/genetics , Lung/virology
2.
Antimicrob Agents Chemother ; 56(8): 4131-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22615276

ABSTRACT

Emergence of drug-resistant bacteria represents a high, unmet medical need, and discovery of new antibacterials acting on new bacterial targets is strongly needed. ATP synthase has been validated as an antibacterial target in Mycobacterium tuberculosis, where its activity can be specifically blocked by the diarylquinoline TMC207. However, potency of TMC207 is restricted to mycobacteria with little or no effect on the growth of other Gram-positive or Gram-negative bacteria. Here, we identify diarylquinolines with activity against key Gram-positive pathogens, significantly extending the antibacterial spectrum of the diarylquinoline class of drugs. These compounds inhibited growth of Staphylococcus aureus in planktonic state as well as in metabolically resting bacteria grown in a biofilm culture. Furthermore, time-kill experiments showed that the selected hits are rapidly bactericidal. Drug-resistant mutations were mapped to the ATP synthase enzyme, and biochemical analysis as well as drug-target interaction studies reveal ATP synthase as a target for these compounds. Moreover, knockdown of the ATP synthase expression strongly suppressed growth of S. aureus, revealing a crucial role of this target in bacterial growth and metabolism. Our data represent a proof of principle for using the diarylquinoline class of antibacterials in key Gram-positive pathogens. Our results suggest that broadening the antibacterial spectrum for this chemical class is possible without drifting off from the target. Development of the diarylquinolines class may represent a promising strategy for combating Gram-positive pathogens.


Subject(s)
ATP Synthetase Complexes/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Mitochondria/drug effects , Quinolines/pharmacology , Staphylococcus aureus/drug effects , ATP Synthetase Complexes/genetics , Adenosine Triphosphate/biosynthesis , Amino Acid Sequence , Biofilms/drug effects , Cell Line, Tumor , Drug Resistance, Bacterial/genetics , Gram-Positive Bacteria/growth & development , HeLa Cells , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Quinolines/chemistry , Quinolines/toxicity , Sequence Alignment , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...