Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Journal of Forensic Medicine ; (6): 526-532, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-984147

ABSTRACT

The oral cavity is the second largest microbial bank in humans after the intestinal canal, colonizing a large number of microorganisms including viruses, bacteria, archaea, fungi and protozoa. The great number of microbial cells, good DNA stability, and individual has a unique microbial community, these characteristics make the human microbiome expected to become a new biomarker for forensic individual identification. This article describes the characteristics of human oral microorganisms and microbial molecular markers in detail, analyzes the potential application value of microorganisms in forensic individual identification, and reviews the research progress of human oral microorganisms in forensic individual identification.


Subject(s)
Humans , Microbiota , Forensic Medicine
2.
Journal of Forensic Medicine ; (6): 576-580, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-985049

ABSTRACT

Objective To explore the change rules of blood ethanol and blood acetaldehyde concentration, the impairment of psychomotor functions of different acetaldehyde dehydrogenase (ALDH) 2 genotype individuals after alcohol consumption and the relationship among them. Methods The ALDH2 genotypes in seventy-nine healthy volunteers were obtained by SNaPshotTM method, then divided into ALDH2*1/*1 (wild type) and ALDH2*1/*2 (mutant type) group. After volunteers consumed 1.0 g/kg of alcohol, blood ethanol concentration and blood acetaldehyde concentration at a series of time points before and after alcohol consumption and psychomotor functions, such as, visual selective response time, auditory simple response time and tracking experiment were detected. Biphasic alcohol response questionnaires were collected. Results After alcohol consumption, ALDH2*1/*2 group's blood ethanol and blood acetaldehyde concentration reached the peak earlier than ALDH2*1/*1 group. Its blood acetaldehyde concentration was higher than that of ALDH2*1/*1 group, 1-6 h after alcohol consumption. The psychomotor functions, such as visual selective response time and auditory simple response time in ALDH2*1/*2 group were more significantly impaired than those in ALDH2*1/*1 group after alcohol consumption. There was no statistical significance between the two groups in excitement or sedation reactions (P>0.05). Pearson correlation coefficient test showed that blood acetaldehyde concentration was related with psychomotor function. Conclusion There are significant differences between the psychomotor function of ALDH2 wild type and mutant type individuals after alcohol consumption estimated to be related to the difference in blood acetaldehyde concentration after alcohol consumption.


Subject(s)
Humans , Acetaldehyde/metabolism , Alcohol Drinking/blood , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase, Mitochondrial , Aldehyde Oxidoreductases , Ethanol/metabolism , Genotype , Polymorphism, Genetic/genetics , Psychomotor Performance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...