Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 13636, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948616

ABSTRACT

Balancing safety and efficacy is a major consideration for cancer treatments, especially when combining cancer immunotherapy with other treatment modalities such as chemotherapy. Approaches that induce immunogenic cell death (ICD) are expected to eliminate cancer cells by direct cell killing as well as activation of an antitumor immune response. We have developed a gene therapy approach based on p19Arf and interferon-ß gene transfer that, similar to conventional inducers of ICD, results in the release of DAMPS and immune activation. Here, aiming to potentiate this response, we explore whether association between our approach and treatment with doxorubicin (Dox), a known inducer of ICD, could further potentiate treatment efficacy without inducing cardiotoxicity, a critical side effect of Dox. Using central composite rotational design analysis, we show that cooperation between gene transfer and chemotherapy killed MCA205 and B16F10 cells and permitted the application of reduced viral and drug doses. The treatments also cooperated to induce elevated levels of ICD markers in MCA205, which correlated with improved efficacy of immunotherapy in vivo. Treatment of subcutaneous MCA205 tumors associating gene transfer and low dose (10 mg/kg) chemotherapy resulted in inhibition of tumor progression. Moreover, the reduced dose did not cause cardiotoxicity as compared to the therapeutic dose of Dox (20 mg/kg). The association of p19Arf/interferon-ß gene transfer and Dox chemotherapy potentiated antitumor response and minimized cardiotoxicity.


Subject(s)
Cardiotoxicity , Neoplasms , Cardiotoxicity/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Genes, Neoplasm , Humans , Immunotherapy/methods , Interferon-beta/genetics , Neoplasms/drug therapy , Neoplasms/genetics
2.
Sci Rep ; 10(1): 17893, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087767

ABSTRACT

Since melanomas often retain wild type p53, we developed an adenoviral vector, AdRGD-PG, which provides robust transduction and transgene expression in response to p53. Previously, this vector was used for interferon-ß gene transfer in mouse models of melanoma, resulting in control of tumor progression, but limited cell killing. Here, the AdRGD-PG-hIFNß vector encoding the human interferon-ß cDNA (hIFNß) was used to transduce human melanoma cell lines SK-MEL-05 and SK-MEL-147 (both wild type p53). In vitro, cell death was induced in more than 80% of the cells and correlated with elevated annexinV staining and caspase 3/7 activity. Treatment with hIFNß promoted cell killing in neighboring, non-transduced cells, thus revealing a bystander effect. In situ gene therapy resulted in complete inhibition of tumor progression for SK-MEL-147 when using nude mice with no evidence of hepatotoxicity. However, the response in Nod-Scid mice was less robust. For SK-MEL-05, tumor inhibition was similar in nude and Nod-Scid mice and was less efficient than seen for SK-MEL-147, indicating both cell type and host specific responses. The AdRGD-PG-hIFNß vector provides extensive killing of human melanoma cells in vitro and a potent anti-tumor effect in vivo. This study provides a critical advance in the development of our melanoma gene therapy approach.


Subject(s)
Adenoviridae , Gene Transfer Techniques , Genetic Vectors , Interferon-beta/genetics , Melanoma/genetics , Melanoma/pathology , Animals , Annexin A5/metabolism , Caspase 3/metabolism , Cell Line, Tumor , DNA, Complementary , Genetic Therapy , Humans , Melanoma/therapy , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Molecular Targeted Therapy , Tumor Suppressor Protein p53
3.
Gene Ther ; 27(1-2): 15-26, 2020 02.
Article in English | MEDLINE | ID: mdl-30926960

ABSTRACT

For patients with metastatic prostate cancer, the 5-year survival rate of 31% points to a need for novel therapies and improvement of existing modalities. We propose that p53 gene therapy and chemotherapy, when combined, will provide superior tumor cell killing for the treatment of prostate carcinoma. To this end, we have developed the AdRGD-PGp53 vector which offers autoregulated expression of p53, resulting in enhanced tumor cell killing in vitro and in vivo. Here, we combined AdRGD-PGp53 along with the chemotherapy drugs used in the clinical treatment of prostate carcinoma, mitoxantrone, docetaxel, or cabazitaxel. Our results indicate that all drugs increase phosphorylation of p53, leading to improved induction of p53 targets. In vitro experiments reveal that AdRGD-PGp53 sensitizes prostate cancer cells to each of the drugs tested, conferring increased levels of cell death. In a xenograft mouse model of in situ gene therapy, AdRGD-PGp53 treatment, when combined with cabazitaxel, drastically reduced tumor progression and increased survival rates to 100%. Strikingly, we used a sub-therapeutic dose of cabazitaxel thus avoiding leukopenia, yet still showed potent anti-tumor effects when combined with AdRGD-PGp53 in this mouse model. The AdRGD-PGp53 approach warrants further development for its application in gene therapy of prostate carcinoma.


Subject(s)
Genes, p53/genetics , Prostatic Neoplasms/therapy , Taxoids/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Disease-Free Survival , Drug Therapy, Combination/methods , Gene Expression Regulation, Neoplastic/genetics , Genes, p53/immunology , Genetic Therapy/methods , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Taxoids/metabolism , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays/methods
4.
Methods Mol Biol ; 2086: 61-67, 2020.
Article in English | MEDLINE | ID: mdl-31707667

ABSTRACT

One of the most versatile gene transfer methods involves the use of recombinant lentiviral vectors since they can transduce both dividing and nondividing cells, are considered to be safe and provide long-term transgene expression since the integrated viral genome, the provirus, is passed on to daughter cells. These characteristics are highly desirable when a modified cell must continue to express the transgene even after multiple cell divisions. Lentiviral vectors are often used to introduce protein encoding cDNAs, such as reporter genes, or for noncoding sequences, such as mediators of RNA interference or genome editing, including shRNA or gRNA, respectively. In the gene therapy setting, lentiviral vectors have been used successfully for the modification of hematopoietic stem cells, resulting in restored immune function or correction of defects in hemoglobin, to name but a few examples. The success of chimeric antigen receptor (CAR) T cells for the treatment of B cell leukemias and lymphomas has been particularly striking and this approach has relied heavily on lentivirus-mediated gene transfer. Here we present a typical protocol for the production of lentivirus, concentration by ultracentrifugation and determination of virus titer. The resulting virus can then be used in laboratory assays of gene transfer, including the establishment of CAR T cells.


Subject(s)
Genetic Engineering , Genetic Vectors/biosynthesis , Genetic Vectors/genetics , Lentivirus/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Flow Cytometry , Gene Expression , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Genetic Vectors/isolation & purification , Humans , Immunotherapy, Adoptive , Transduction, Genetic , Transfection , Transgenes , Ultracentrifugation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...