Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Biotechnol Biofuels Bioprod ; 16(1): 137, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710260

ABSTRACT

Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75-80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of C. thermocellum. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of adhE. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an adhE deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of C. thermocellum with improved ethanol production.

2.
Appl Environ Microbiol ; 88(1): e0153121, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35015978

ABSTRACT

Clostridium thermocellum is a thermophilic, anaerobic bacterium that natively ferments cellulose to ethanol and is a candidate for cellulosic biofuel production. Recently, we identified a hypermutator strain of C. thermocellum with a C669Y mutation in the polC gene, which encodes a DNA polymerase III enzyme. Here, we reintroduced this mutation using recently developed CRISPR tools to demonstrate that this mutation is sufficient to recreate the hypermutator phenotype. The resulting strain shows an approximately 30-fold increase in the mutation rate. This mutation is hypothesized to function by interfering with metal ion coordination in the PHP (polymerase and histidinol phosphatase) domain, which is responsible for proofreading. The ability to selectively increase the mutation rate in C. thermocellum is a useful tool for future directed evolution experiments. IMPORTANCE Cellulosic biofuels are a promising approach to decarbonize the heavy-duty-transportation sector. A longstanding barrier to cost-effective cellulosic biofuel production is the recalcitrance of cellulose to solubilization. Native cellulose-consuming organisms, such as Clostridium thermocellum, are promising candidates for cellulosic biofuel production; however, they often need to be genetically modified to improve product formation. One approach is adaptive laboratory evolution. Our findings demonstrate a way to increase the mutation rate in this industrially relevant organism, which can reduce the time needed for adaptive evolution experiments.


Subject(s)
Clostridium thermocellum , Base Composition , Clostridium thermocellum/genetics , DNA Polymerase III , Nucleotides , Phenotype , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
3.
Biotechnol Biofuels ; 13: 40, 2020.
Article in English | MEDLINE | ID: mdl-32175007

ABSTRACT

BACKGROUND: Engineering efforts targeted at increasing ethanol by modifying the central fermentative metabolism of Clostridium thermocellum have been variably successful. Here, we aim to understand this variation by a multifaceted approach including genomic and transcriptomic analysis combined with chemostat cultivation and high solids cellulose fermentation. Three strain lineages comprising 16 strains total were examined. Two strain lineages in which genes involved in pathways leading to organic acids and/or sporulation had been knocked out resulted in four end-strains after adaptive laboratory evolution (ALE). A third strain lineage recapitulated mutations involving adhE that occurred spontaneously in some of the engineered strains. RESULTS: Contrary to lactate dehydrogenase, deleting phosphotransacetylase (pta, acetate) negatively affected steady-state biomass concentration and caused increased extracellular levels of free amino acids and pyruvate, while no increase in ethanol was detected. Adaptive laboratory evolution (ALE) improved growth and shifted elevated levels of amino acids and pyruvate towards ethanol, but not for all strain lineages. Three out of four end-strains produced ethanol at higher yield, and one did not. The occurrence of a mutation in the adhE gene, expanding its nicotinamide-cofactor compatibility, enabled two end-strains to produce more ethanol. A disruption in the hfsB hydrogenase is likely the reason why a third end-strain was able to make more ethanol. RNAseq analysis showed that the distribution of fermentation products was generally not regulated at the transcript level. At 120 g/L cellulose loadings, deletions of spo0A, ldh and pta and adaptive evolution did not negatively influence cellulose solubilization and utilization capabilities. Strains with a disruption in hfsB or a mutation in adhE produced more ethanol, isobutanol and 2,3-butanediol under these conditions and the highest isobutanol and ethanol titers reached were 5.1 and 29.9 g/L, respectively. CONCLUSIONS: Modifications in the organic acid fermentative pathways in Clostridium thermocellum caused an increase in extracellular pyruvate and free amino acids. Adaptive laboratory evolution led to improved growth, and an increase in ethanol yield and production due a mutation in adhE or a disruption in hfsB. Strains with deletions in ldh and pta pathways and subjected to ALE demonstrated undiminished cellulolytic capabilities when cultured on high cellulose loadings.

4.
Metab Eng Commun ; 10: e00116, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31890588

ABSTRACT

The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production.

5.
PLoS One ; 13(4): e0195143, 2018.
Article in English | MEDLINE | ID: mdl-29621294

ABSTRACT

Thermoanaerobacterium saccharolyticum is a thermophilic anaerobe that has been engineered to produce high amounts of ethanol, reaching ~90% theoretical yield at a titer of 70 g/L. Here we report the physiological changes that occur upon deleting the redox-sensing transcriptional regulator Rex in wild type T. saccharolyticum: a single deletion of rex resulted in a two-fold increase in ethanol yield (from 40% to 91% theoretical yield), but the resulting strains grew only about a third as fast as the wild type strain. Deletion of the rex gene also had the effect of increasing expression of alcohol dehydrogenase genes, adhE and adhA. After several serial transfers, the ethanol yield decreased from an average of 91% to 55%, and the growth rates had increased. We performed whole-genome resequencing to identify secondary mutations in the Δrex strains adapted for faster growth. In several cases, secondary mutations had appeared in the adhE gene. Furthermore, in these strains the NADH-linked alcohol dehydrogenase activity was greatly reduced. Complementation studies were done to reintroduce rex into the Δrex strains: reintroducing rex decreased ethanol yield to below wild type levels in the Δrex strain without adhE mutations, but did not change the ethanol yield in the Δrex strain where an adhE mutation occurred.


Subject(s)
Ethanol/metabolism , Gene Products, rex/genetics , Gene Products, rex/metabolism , Thermoanaerobacterium/genetics , Thermoanaerobacterium/metabolism , Adaptation, Biological , Alcohol Dehydrogenase/metabolism , Fermentation , Gene Deletion , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Mutation , Oxidation-Reduction , Whole Genome Sequencing
6.
Biotechnol Biofuels ; 10: 276, 2017.
Article in English | MEDLINE | ID: mdl-29213320

ABSTRACT

BACKGROUND: Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application. RESULTS: Here, we analyzed changes in the relative concentration of intracellular metabolites in response to gradual addition of ethanol to growing cultures. For C. thermocellum, we observed that ethanol tolerance, in experiments with gradual ethanol addition, was twofold higher than previously observed in response to a stepwise increase in the ethanol concentration, and appears to be due to a mechanism other than mutation. As ethanol concentrations increased, we found accumulation of metabolites upstream of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reaction and depletion of metabolites downstream of that reaction. This pattern was not observed in the more ethanol-tolerant organism Thermoanaerobacterium saccharolyticum. We hypothesize that the Gapdh enzyme may have different properties in the two organisms. Our hypothesis is supported by enzyme assays showing greater sensitivity of the C. thermocellum enzyme to high levels of NADH, and by the increase in ethanol tolerance and production when the T. saccharolyticum gapdh was expressed in C. thermocellum. CONCLUSIONS: We have demonstrated that a metabolic bottleneck occurs at the GAPDH reaction when the growth of C. thermocellum is inhibited by high levels of ethanol. We then showed that this bottleneck could be relieved by expression of the gapdh gene from T. saccharolyticum. This enzyme is a promising target for future metabolic engineering work.

7.
Biotechnol Biofuels ; 10: 282, 2017.
Article in English | MEDLINE | ID: mdl-29213322

ABSTRACT

BACKGROUND: With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. RESULTS: Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE. We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs-type hydrogenases. CONCLUSION: Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms (T. xylanolyticum and T. thermosaccharolyticum), the ethanol yields are the highest reported to date.

8.
Metab Eng ; 42: 175-184, 2017 07.
Article in English | MEDLINE | ID: mdl-28663138

ABSTRACT

Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.


Subject(s)
Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Clostridium thermocellum/metabolism , Ethanol/metabolism , Thermoanaerobacterium/genetics , Clostridium thermocellum/genetics , Thermoanaerobacterium/enzymology
9.
Metab Eng ; 39: 71-79, 2017 01.
Article in English | MEDLINE | ID: mdl-27989806

ABSTRACT

The NfnAB (NADH-dependent reduced ferredoxin: NADP+ oxidoreductase) and Rnf (ion-translocating reduced ferredoxin: NAD+ oxidoreductase) complexes are thought to catalyze electron transfer between reduced ferredoxin and NAD(P)+. Efficient electron flux is critical for engineering fuel production pathways, but little is known about the relative importance of these enzymes in vivo. In this study we investigate the importance of the NfnAB and Rnf complexes in Clostridium thermocellum for growth on cellobiose and Avicel using gene deletion, enzyme assays, and fermentation product analysis. The NfnAB complex does not seem to play a major role in metabolism, since deletion of nfnAB genes had little effect on the distribution of fermentation products. By contrast, the Rnf complex appears to play an important role in ethanol formation. Deletion of rnf genes resulted in a decrease in ethanol formation. Overexpression of rnf genes resulted in an increase in ethanol production of about 30%, but only in strains where the hydG hydrogenase maturation gene was also deleted.


Subject(s)
Bacterial Proteins/genetics , Clostridium thermocellum/physiology , Electron Transport/physiology , Ethanol/metabolism , Genetic Enhancement/methods , Metabolic Engineering/methods , Bacterial Proteins/metabolism , Biosynthetic Pathways/physiology , Ethanol/isolation & purification , Metabolic Networks and Pathways/physiology
10.
Metab Eng Commun ; 3: 120-129, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29142822

ABSTRACT

Clostridium thermocellum is a promising candidate for ethanol production from cellulosic biomass, but requires metabolic engineering to improve ethanol yield. A key gene in the ethanol production pathway is the bifunctional aldehyde and alcohol dehydrogenase, adhE. To explore the effects of overexpressing wild-type, mutant, and exogenous adhEs, we developed a new expression plasmid, pDGO144, that exhibited improved transformation efficiency and better gene expression than its predecessor, pDGO-66. This new expression plasmid will allow for many other metabolic engineering and basic research efforts in C. thermocellum. As proof of concept, we used this plasmid to express 12 different adhE genes (both wild type and mutant) from several organisms. Ethanol production varied between clones immediately after transformation, but tended to converge to a single value after several rounds of serial transfer. The previously described mutant C. thermocellum D494G adhE gave the best ethanol production, which is consistent with previously published results.

11.
Biotechnol Biofuels ; 8: 138, 2015.
Article in English | MEDLINE | ID: mdl-26379770

ABSTRACT

BACKGROUND: Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. RESULTS: It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. CONCLUSION: PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.

12.
Cytoskeleton (Hoboken) ; 72(8): 373-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26265212

ABSTRACT

In mice and humans, loss of myosin VI (Myo6) function results in deafness, and certain Myo6 mutations also result in cardiomyopathies in humans. The current studies have utilized the Snell's waltzer (sv) mouse (a functional null mutation for Myo6) to determine if this mouse also exhibits cardiac defects and thus used to determine the cellular and molecular basis for Myo6-associated heart disease. Myo6 is expressed in mouse heart where it is predominantly expressed in vascular endothelial cells (VECs) based on co-localization with the VEC cell marker CD31. Sv/sv heart mass is significantly greater than that of sv/+ littermates, a result of left ventricle hypertrophy. The left ventricle of the sv/sv exhibits extensive fibrosis, both interstitial and perivascular, based on histologic staining, and immunolocalization of several markers for fibrosis including fibronectin, collagen IV, and the fibroblast marker vimentin. Myo6 is also expressed in lung VECs but not in VECs of intestine, kidney, or liver. Sv/sv lungs exhibit increased periaveolar fibrosis and enlarged air sacs. Electron microscopy of sv/sv cardiac and lung VECs revealed abnormal ultrastructure, including luminal protrusions and increased numbers of cytoplasmic vesicles. Previous studies have shown that loss of function of either Myo6 or its adaptor binding partner synectin/GIPC results in impaired arterial development due to defects in VEGF signaling. However, examination of synectin/GIPC-/- heart revealed no fibrosis or significantly altered VEC ultrastructure, suggesting that the cardiac and lung defects observed in the sv/sv mouse are not due to Myo6 function in arterial development.


Subject(s)
Cardiomyopathies/etiology , Endothelial Cells , Hypertrophy, Left Ventricular , Myosin Heavy Chains/genetics , Animals , Cardiomyopathies/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fibrosis , Humans , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Lung/pathology , Mice , Mice, Mutant Strains , Myocardium/pathology , Myosin Heavy Chains/metabolism
13.
Metab Eng Commun ; 2: 23-29, 2015 Dec.
Article in English | MEDLINE | ID: mdl-34150505

ABSTRACT

A key tool for metabolic engineering is the ability to express heterologous genes. One obstacle to gene expression in non-model organisms, and especially in relatively uncharacterized bacteria, is the lack of well-characterized promoters. Here we test 17 promoter regions for their ability to drive expression of the reporter genes ß-galactosidase (lacZ) and NADPH-alcohol dehydrogenase (adhB) in Clostridium thermocellum, an important bacterium for the production of cellulosic biofuels. Only three promoters have been commonly used for gene expression in C. thermocellum, gapDH, cbp and eno. Of the new promoters tested, 2638, 2926, 966 and 815 showed reliable expression. The 2638 promoter showed relatively higher activity when driving adhB (compared to lacZ), and the 815 promoter showed relatively higher activity when driving lacZ (compared to adhB).

14.
J Vis Exp ; (88): e51666, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24998400

ABSTRACT

Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope's autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators.


Subject(s)
Adenoviridae/genetics , Lentivirus/genetics , Microscopy, Confocal/methods , Myocytes, Cardiac/physiology , Transduction, Genetic/methods , Animals , Image Processing, Computer-Assisted/methods , Myocytes, Cardiac/cytology , Rats
15.
Circulation ; 130(11): 902-9, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-24982127

ABSTRACT

BACKGROUND: Regulation of vascular endothelial growth factor receptor-2 (VEGFR2) signaling is a control point that determines the extent of vascular tree formation. Recent studies demonstrated an important role played by VEGFR2 endothelial trafficking in control of its activity and suggested the involvement of a phosphotyrosine phosphatase 1b (PTP1b) in this process. This study was designed to define the role of PTP1b in endothelial VEGFR2 signaling and its role in regulation of angiogenesis and arteriogenesis. METHODS AND RESULTS: We generated mice carrying an endothelial-specific deletion of PTP1b and examined the effect of this knockout on VEGF signaling, angiogenesis, and arteriogenesis in vitro and in vivo. PTP1b knockout endothelial cells had increased VEGF-dependent activation of extracellular signal-regulated kinase signaling, sprouting, migration, and proliferation compared with controls. Endothelial PTP1b null mice had increased retinal and Matrigel implant angiogenesis and accelerated wound healing, pointing to enhanced angiogenesis. Increased arteriogenesis was demonstrated by observations of faster recovery of arterial blood flow and large numbers of newly formed arterioles in the hindlimb ischemia mouse model. PTP1b endothelial knockout also rescued impaired blood flow recovery after common femoral artery ligation in synectin null mice. CONCLUSIONS: PTP1b is a key regulator of endothelial VEGFR2 signaling and plays an important role in regulation of the extent of vascular tree formation.


Subject(s)
Endothelial Cells/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Aorta/cytology , Cell Movement/physiology , Cell Proliferation , Disease Models, Animal , Endothelial Cells/cytology , Female , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells , Ischemia/metabolism , Ischemia/physiopathology , Male , Mice , Mice, Mutant Strains , Neovascularization, Physiologic/physiology , Primary Cell Culture , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , RNA, Small Interfering/genetics , Vascular Endothelial Growth Factor A/metabolism
16.
J Biol Chem ; 289(1): 510-9, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24235146

ABSTRACT

Angiopoietin-2 (Ang2) is an extracellular protein and one of the principal ligands of Tie2 receptor that is involved in the regulation of vascular integrity, quiescence, and inflammation. The mode of secretion of Ang2 has never been established, however. Here, we provide evidence that Ang2 is secreted from endothelial cells via exosomes and that this process is inhibited by the PI3K/Akt/endothelial nitric oxide synthase (eNOS) signaling pathway, whereas it is positively regulated by the syndecan-4/syntenin pathway. Vascular defects in Akt1 null mice arise, in part, because of excessive Ang2 secretion and can be rescued by the syndecan-4 knock-out that reduces extracellular Ang2 levels. This novel mechanism connects three critical signaling pathways: angiopoietin/Tie2, PI3K/Akt/eNOS, and syndecan/syntenin, which play important roles in vascular growth and stabilization.


Subject(s)
Angiopoietin-2/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Syndecan-4/metabolism , Syntenins/metabolism , Angiopoietin-2/genetics , Animals , Cells, Cultured , Endothelial Cells/cytology , Exosomes/genetics , Mice , Mice, Knockout , Neovascularization, Physiologic/physiology , Nitric Oxide Synthase Type III/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Syndecan-4/genetics , Syntenins/genetics
17.
Circ Res ; 113(9): 1076-86, 2013 Oct 12.
Article in English | MEDLINE | ID: mdl-23897694

ABSTRACT

RATIONALE: Arteriogenesis is the process of formation of arterial conduits. Its promotion is an attractive therapeutic strategy in occlusive atherosclerotic diseases. Despite the functional and clinical importance of arteriogenesis, the biology of the process is poorly understood. Synectin, a gene previously implicated in the regulation of vascular endothelial cell growth factor signaling, offers a unique opportunity to determine relative contributions of various cell types to arteriogenesis. OBJECTIVE: We investigated the cell-autonomous effects of a synectin knockout in arterial morphogenesis. METHODS AND RESULTS: A floxed synectin knockin mouse line was crossbred with endothelial-specific (Tie2, Cdh5, Pdgfb) and smooth muscle myosin heavy chain-specific Cre driver mouse lines to produce cell type-specific deletions. Ablation of synectin expression in endothelial, but not smooth muscle cells resulted in the presence of developmental arterial morphogenetic defects (smaller size of the arterial tree, reduced number of arterial branches and collaterals) and impaired arteriogenesis in adult mice. CONCLUSIONS: Synectin modulates developmental and adult arteriogenesis in an endothelial cell-autonomous fashion. These findings show for the first time that endothelial cells are central to both developmental and adult arteriogenesis and provide a model for future studies of factors involved in this process.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arteries/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Genotype , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Time Factors
19.
Dev Cell ; 25(2): 156-68, 2013 Apr 29.
Article in English | MEDLINE | ID: mdl-23639442

ABSTRACT

Neuropilin 1 (NRP1) plays an important but ill-defined role in VEGF-A signaling and vascular morphogenesis. We show that mice with a knockin mutation that ablates the NRP1 cytoplasmic tail (Nrp1(cyto)) have normal angiogenesis but impaired developmental and adult arteriogenesis. The arteriogenic defect was traced to the absence of a PDZ-dependent interaction between NRP1 and VEGF receptor 2 (VEGFR2) complex and synectin, which delayed trafficking of endocytosed VEGFR2 from Rab5+ to EAA1+ endosomes. This led to increased PTPN1 (PTP1b)-mediated dephosphorylation of VEGFR2 at Y(1175), the site involved in activating ERK signaling. The Nrp1(cyto) mutation also impaired endothelial tubulogenesis in vitro, which could be rescued by expressing full-length NRP1 or constitutively active ERK. These results demonstrate that the NRP1 cytoplasmic domain promotes VEGFR2 trafficking in a PDZ-dependent manner to regulate arteriogenic ERK signaling and establish a role for NRP1 in VEGF-A signaling during vascular morphogenesis.


Subject(s)
Arteries/physiopathology , Cytoplasm/metabolism , Morphogenesis/physiology , Neovascularization, Pathologic , Neuropilin-1/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Arteries/cytology , Cells, Cultured , Endocytosis/physiology , Endosomes/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , MAP Kinase Signaling System , Mice , Phosphorylation , Signal Transduction , Transferrin/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vesicular Transport Proteins/metabolism
20.
Cancer Cell ; 23(4): 477-88, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23597562

ABSTRACT

Receptor tyrosine kinases (RTK) are targets for anticancer drug development. To date, only RTK inhibitors that block orthosteric binding of ligands and substrates have been developed. Here, we report the pharmacologic characterization of the chemical SSR128129E (SSR), which inhibits fibroblast growth factor receptor (FGFR) signaling by binding to the extracellular FGFR domain without affecting orthosteric FGF binding. SSR exhibits allosteric properties, including probe dependence, signaling bias, and ceiling effects. Inhibition by SSR is highly conserved throughout the animal kingdom. Oral delivery of SSR inhibits arthritis and tumors that are relatively refractory to anti-vascular endothelial growth factor receptor-2 antibodies. Thus, orally-active extracellularly acting small-molecule modulators of RTKs with allosteric properties can be developed and may offer opportunities to improve anticancer treatment.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/metabolism , Small Molecule Libraries/pharmacology , Allosteric Regulation , Animals , Antibodies, Monoclonal/pharmacology , Arthritis, Experimental/drug therapy , Bone Resorption/drug therapy , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/metabolism , HEK293 Cells , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Neovascularization, Pathologic/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...