Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 365(6451): 386-392, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31273070

ABSTRACT

Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.


Subject(s)
Ceramides/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Insulin Resistance/genetics , Membrane Proteins/genetics , Oxidoreductases/genetics , Animals , Ceramides/chemistry , Ceramides/genetics , Diet, High-Fat/adverse effects , Gene Deletion , Leptin/deficiency , Mice , Mice, Mutant Strains , Sphingolipids/chemistry , Sphingolipids/metabolism
2.
Cell Metab ; 24(6): 820-834, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27818258

ABSTRACT

Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.


Subject(s)
Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Ceramides/pharmacology , Inflammation/pathology , Subcutaneous Fat/pathology , Adipocytes/drug effects , Adipose Tissue, Brown/drug effects , Adrenergic beta-Agonists/pharmacology , Adult , Aged , Animals , Body Mass Index , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cold Temperature , Diabetes Mellitus/metabolism , Dioxoles/pharmacology , Energy Metabolism/drug effects , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Deletion , Gene Expression Regulation/drug effects , Glucose/metabolism , Humans , Inflammation/genetics , Mice , Middle Aged , Obesity/metabolism , Obesity/pathology , Organ Specificity/drug effects , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/biosynthesis , Sphingolipids/metabolism , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...