Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131610

ABSTRACT

RNA-binding proteins (RBPs) containing intrinsically disordered domains undergo liquid-liquid phase separation to form nuclear bodies under stress conditions. This process is also connected to the misfolding and aggregation of RBPs, which are associated with a series of neurodegenerative diseases. However, it remains elusive how folding states of RBPs changes upon the formation and maturation of nuclear bodies. Here, we describe SNAP-tag based imaging methods to visualize the folding states of RBPs in live cells via time-resolved quantitative microscopic analyses of their micropolarity and microviscosity. Using these imaging methods in conjunction with immunofluorescence imaging, we demonstrate that RBPs, represented by TDP-43, initially enters the PML nuclear bodies in its native state upon transient proteostasis stress, albeit it begins to misfolded during prolonged stress. Furthermore, we show that heat shock protein 70 co-enters the PML nuclear bodies to prevent the degradation of TDP-43 from the proteotoxic stress, thus revealing a previously unappreciated protective role of the PML nuclear bodies in the prevention of stress-induced degradation of TDP-43. In summary, our imaging methods described in the manuscript, for the first time, reveal the folding states of RBPs, which were previously challenging to study with conventional methods in nuclear bodies of live cells. This study uncovers the mechanistic correlations between the folding states of a protein and functions of nuclear bodies, in particular PML bodies. We envision that the imaging methods can be generally applied to elucidating the structural aspects of other proteins that exhibit granular structures under biological stimulus.

SELECTION OF CITATIONS
SEARCH DETAIL
...