Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2256): 20220284, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573882

ABSTRACT

In this paper, we develop an energy-based dynamical system model driven by a Markov input process to present a unified framework for stochastic thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic dissipativity, losslessness and accumulativity theory, we develop a nonlinear stochastic port-Hamiltonian system model characterized by energy conservation and entropy non-conservation laws that are consistent with statistical thermodynamic principles. In particular, we show that the difference between the average stored system energy and the average supplied system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration, whereas the difference between average system entropy production and the average system entropy consumption is a submartingale with respect to the system filtration. This article is part of the theme issue 'Thermodynamics 2.0: Bridging the natural and social sciences (Part 2)'.

SELECTION OF CITATIONS
SEARCH DETAIL
...