Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 256: 109806, 2023 11.
Article in English | MEDLINE | ID: mdl-37827267

ABSTRACT

The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , CD4-Positive T-Lymphocytes , Receptors, Chemokine/metabolism , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory
2.
Clin Infect Dis ; 76(3): e155-e162, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35869848

ABSTRACT

BACKGROUND: Immune dysregulation in individuals with Down syndrome (DS) leads to an increased risk for hospitalization and death due to coronavirus disease 2019 (COVID-19) and may impair the generation of protective immunity after vaccine administration. METHODS: The cellular and humoral responses of 55 individuals with DS who received a complete SARS-CoV-2 vaccination regime at 1 to 3 (visit [V 1]) and 6 (V2) months were characterized. RESULTS: SARS-CoV-2-reactive CD4+ and CD8+ T lymphocytes with a predominant Th1 phenotype were observed at V1 and increased at V2. Likewise, an increase in SARS-CoV-2-specific circulating Tfh (cTfh) cells and CD8+ CXCR5+ PD-1hi lymphocytes was already observed at V1 after vaccine administration. Specific immunoglobulin G (IgG) antibodies against SARS-CoV-2 S protein were detected in 96% and 98% of subjects at V1 and V2, respectively, although IgG titers decreased significantly between both time points. CONCLUSIONS: Our findings show that DS individuals develop an effective immune response to usual regimes of SARS-CoV-2 vaccination.


Subject(s)
Blood Group Antigens , COVID-19 , Down Syndrome , Nijmegen Breakage Syndrome , Humans , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunity , Immunoglobulin G , SARS-CoV-2 , Vaccination , Adult
3.
Front Immunol ; 12: 815651, 2021.
Article in English | MEDLINE | ID: mdl-35087533

ABSTRACT

Coronavirus Disease 2019 (COVID-19) pneumonia is a life-threatening infectious disease, especially for elderly patients with multiple comorbidities. Despite enormous efforts to understand its underlying etiopathogenic mechanisms, most of them remain elusive. In this study, we compared differential plasma miRNAs and cytokines profiles between COVID-19 and other community-acquired pneumonias (CAP). A first screening and subsequent validation assays in an independent cohort of patients revealed a signature of 15 dysregulated miRNAs between COVID-19 and CAP patients. Additionally, multivariate analysis displayed a combination of 4 miRNAs (miR-106b-5p, miR-221-3p, miR-25-3p and miR-30a-5p) that significantly discriminated between both pathologies. Search for targets of these miRNAs, combined with plasma protein measurements, identified a differential cytokine signature between COVID-19 and CAP that included EGFR, CXCL12 and IL-10. Significant differences were also detected in plasma levels of CXCL12, IL-17, TIMP-2 and IL-21R between mild and severe COVID-19 patients. These findings provide new insights into the etiopathological mechanisms underlying COVID-19.


Subject(s)
COVID-19/immunology , Circulating MicroRNA/blood , Cytokines/blood , Pneumonia/immunology , Biomarkers/blood , COVID-19/blood , Cohort Studies , Community-Acquired Infections/blood , Community-Acquired Infections/immunology , Female , Humans , Logistic Models , Male , Middle Aged , Pneumonia/blood
4.
PLoS One ; 15(10): e0240926, 2020.
Article in English | MEDLINE | ID: mdl-33095833

ABSTRACT

INTRODUCTION: Patients with community-acquired pneumonia (CAP) undergo a dysregulated host response that is related to mortality. MicroRNAs (miRNAs) participate in this response, but their expression pattern and their role as biomarkers in CAP have not been fully characterized. METHODS: A prospective observational study was performed in a cohort of 153 consecutive patients admitted to hospital with CAP. Clinical and analytical variables were collected, and the main outcome variable was 30-day mortality. Small RNA was purified from plasma of these patients obtained on the first day of admission, and miRNA expression was analyzed by RT-PCR. Univariate and multivariate analyses were carried out through the construction of a logistic regression model. The proposed model was compared with established prognostic clinical scales using ROC curve analysis. RESULTS: The mean age of the patients included was 74.7 years [SD 15.9]. Their mean PSI was 100.9 [SD 34.6] and the mean modified Charlson index was 2.9 [SD 3.0]. Both miR-146a and miR-16-5p showed statistically significant association with 30-day mortality after admission due to CAP (1.10 vs. 0.23 and 51.74 vs. 35.23, respectively), and this association remained for miR-16-5p in the multivariate analysis adjusted for age, gender and history of bronchoaspiration (OR 0.95, p = 0.021). The area-under-the-curve (AUC) of our adjusted multivariate model (AUC = 0.954 95%CI [0.91-0.99]), was better than those of prognostic scales such as PSI (AUC = 0.799 [0.69-0.91]) and CURB-65 (AUC = 0.722 [0.58-0.86]). CONCLUSIONS: High levels of miR-146a-5p and miR-16-5p upon admission due to CAP are associated with lower mortality at 30 days of follow-up. Both miRNAs could be used as biomarkers of good prognosis in subjects hospitalized with CAP.


Subject(s)
Biomarkers/blood , Community-Acquired Infections/mortality , MicroRNAs/genetics , Up-Regulation , Aged , Aged, 80 and over , Community-Acquired Infections/blood , Community-Acquired Infections/genetics , Female , Hospitalization , Humans , Male , MicroRNAs/blood , Middle Aged , Prognosis , Prospective Studies , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...