Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Genes Immun ; 24(2): 57-70, 2023 04.
Article in English | MEDLINE | ID: mdl-36750753

ABSTRACT

Multiple sclerosis is a chronic neuroinflammatory demyelinating disease of the central nervous system (CNS) of unknown etiology and still incompletely clarified pathogenesis. The disease is generally considered a disorder resulting from a complex interplay between environmental risk factors and predisposing causal genetic variants. To examine the etiopathogenesis of the disease, two complementary pre-clinical models are currently discussed: the "outside-in" model proposing a peripherally elicited inflammatory/autoimmune attack against degraded myelin as the cause of the disease, and the "inside-out" paradigm implying a primary cytodegenerative process of cells in the CNS that triggers secondary reactive inflammatory/autoimmune responses against myelin debris. In this review, the integrating pathogenetic role of damage-associated molecular patterns (DAMPs) in these two scenario models is examined by focusing on the origin and sources of these molecules, which are known to promote neuroinflammation and, via activation of pattern recognition receptor-bearing antigen-presenting cells, drive and shape autoimmune responses. In particular, environmental factors are discussed that are conceptually defined as agents which produce endogenous DAMPs via induction of regulated cell death (RCD) or act themselves as exogenous DAMPs. Indeed, in the field of autoimmune diseases, including multiple sclerosis, recent research has focused on environmental triggers that cause secondary events in terms of subroutines of RCD, which have been identified as prolific sources of DAMPs. Finally, a model of a DAMP-driven positive feed-forward loop of chronic inflammatory demyelinating processes is proposed, aimed at reconciling the competing "inside-out" and "outside-in" paradigms.


Subject(s)
Alarmins , Autoimmune Diseases , Multiple Sclerosis , Humans , Alarmins/metabolism , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Cell Death , Inflammation , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology
3.
Genes Immun ; 22(3): 141-160, 2021 07.
Article in English | MEDLINE | ID: mdl-34140652

ABSTRACT

When surveying the current literature on COVID-19, the "cytokine storm" is considered to be pathogenetically involved in its severe outcomes such as acute respiratory distress syndrome, systemic inflammatory response syndrome, and eventually multiple organ failure. In this review, the similar role of DAMPs is addressed, that is, of those molecules, which operate upstream of the inflammatory pathway by activating those cells, which ultimately release the cytokines. Given the still limited reports on their role in COVID-19, the emerging topic is extended to respiratory viral infections with focus on influenza. At first, a brief introduction is given on the function of various classes of activating DAMPs and counterbalancing suppressing DAMPs (SAMPs) in initiating controlled inflammation-promoting and inflammation-resolving defense responses upon infectious and sterile insults. It is stressed that the excessive emission of DAMPs upon severe injury uncovers their fateful property in triggering dysregulated life-threatening hyperinflammatory responses. Such a scenario may happen when the viral load is too high, for example, in the respiratory tract, "forcing" many virus-infected host cells to decide to commit "suicidal" regulated cell death (e.g., necroptosis, pyroptosis) associated with release of large amounts of DAMPs: an important topic of this review. Ironically, although the aim of this "suicidal" cell death is to save and restore organismal homeostasis, the intrinsic release of excessive amounts of DAMPs leads to those dysregulated hyperinflammatory responses-as typically involved in the pathogenesis of acute respiratory distress syndrome and systemic inflammatory response syndrome in respiratory viral infections. Consequently, as briefly outlined in this review, these molecules can be considered valuable diagnostic and prognostic biomarkers to monitor and evaluate the course of the viral disorder, in particular, to grasp the eventual transition precociously from a controlled defense response as observed in mild/moderate cases to a dysregulated life-threatening hyperinflammatory response as seen, for example, in severe/fatal COVID-19. Moreover, the pathogenetic involvement of these molecules qualifies them as relevant future therapeutic targets to prevent severe/ fatal outcomes. Finally, a theory is presented proposing that the superimposition of coronavirus-induced DAMPs with non-virus-induced DAMPs from other origins such as air pollution or high age may contribute to severe and fatal courses of coronavirus pneumonia.


Subject(s)
Alarmins/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Respiratory Distress Syndrome/immunology , SARS-CoV-2/immunology , Virus Diseases/immunology , Alarmins/metabolism , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome/metabolism , Cytokines/immunology , Cytokines/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Models, Immunological , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/physiology , Virus Diseases/complications , Virus Diseases/metabolism
5.
Int J Environ Res ; 14(5): 583-604, 2020.
Article in English | MEDLINE | ID: mdl-32837525

ABSTRACT

Two prominent models emerged as a result of intense interdisciplinary discussions on the environmental health paradigm, called the "exposome" concept and the "adverse outcome pathway" (AOP) concept that links a molecular initiating event to the adverse outcome via key events. Here, evidence is discussed, suggesting that environmental stress/injury-induced damage-associated molecular patterns (DAMPs) may operate as an essential integrating element of both environmental health research paradigms. DAMP-promoted controlled/uncontrolled innate/adaptive immune responses reflect the key events of the AOP concept. The whole process starting from exposure to a distinct environmental stress/injury-associated with the presence/emission of DAMPs-up to the manifestation of a disease may be regarded as an exposome. Clinical examples of such a scenario are briefly sketched, in particular, a model in relation to the emerging COVID-19 pandemic, where the interaction of noninfectious environmental factors (e.g., particulate matter) and infectious factors (SARS CoV-2) may promote SARS case fatality via superimposition of both exogenous and endogenous DAMPs.

6.
Mol Diagn Ther ; 24(3): 251-262, 2020 06.
Article in English | MEDLINE | ID: mdl-32248387

ABSTRACT

This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent "homeostatic DAMP:SAMP ratio" in each case and a "homeostatic window" of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.


Subject(s)
Inflammation/drug therapy , Inflammation/metabolism , Molecular Targeted Therapy/methods , Biomarkers/blood , Cell-Free Nucleic Acids/blood , Chronic Disease , Coronavirus Infections/drug therapy , HMGB1 Protein/blood , Homeostasis , Humans , Immunity, Innate/drug effects , Immunity, Innate/physiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , S100 Proteins/blood , Vaccination , COVID-19 Drug Treatment
7.
Trials ; 21(1): 274, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32183886

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome continues to drive significant morbidity and mortality after severe trauma. The incidence of trauma-induced, moderate-to-severe hypoxaemia, according to the Berlin definition, could be as high as 45%. Its pathophysiology includes the release of damage-associated molecular patterns (DAMPs), which propagate tissue injuries by triggering neutrophil extracellular traps (NETs). NETs include a DNA backbone coated with cytoplasmic proteins, which drive pulmonary cytotoxic effects. The structure of NETs and many DAMPs includes double-stranded DNA, which prevents their neutralization by plasma. Dornase alfa is a US Food and Drug Administration-approved recombinant DNase, which cleaves extracellular DNA and may therefore break up the backbone of NETs and DAMPs. Aerosolized dornase alfa was shown to reduce trauma-induced lung injury in experimental models and to improve arterial oxygenation in ventilated patients. METHODS: TRAUMADORNASE will be an institution-led, multicentre, double-blinded, placebo-controlled randomized trial in ventilated trauma patients. The primary trial objective is to demonstrate a reduction in the incidence of moderate-to-severe hypoxaemia in severe trauma patients during the first 7 days from 45% to 30% by providing aerosolized dornase alfa as compared to placebo. The secondary objectives are to demonstrate an improvement in lung function and a reduction in morbidity and mortality. Randomization of 250 patients per treatment arm will be carried out through a secure, web-based system. Statistical analyses will include a descriptive step and an inferential step using fully Bayesian techniques. The study was approved by both the Agence Nationale de la Sécurité du Médicament et des Produits de Santé (ANSM, on 5 October 2018) and a National Institutional Review Board (CPP, on 6 November 2018). Participant recruitment began in March 2019. Results will be published in international peer-reviewed medical journals. DISCUSSION: If early administration of inhaled dornase alfa actually reduces the incidence of moderate-to-severe hypoxaemia in patients with severe trauma, this new therapeutic strategy may be easily implemented in many clinical trauma care settings. This treatment may facilitate ventilator weaning, reduce the burden of trauma-induced lung inflammation and facilitate recovery and rehabilitation in severe trauma patients. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03368092. Registered on 11 December 2017.


Subject(s)
Deoxyribonuclease I/therapeutic use , Hypoxia/drug therapy , Respiratory Distress Syndrome/drug therapy , Wounds and Injuries/therapy , Aerosols , Bayes Theorem , Clinical Trials, Phase III as Topic , Deoxyribonuclease I/administration & dosage , Double-Blind Method , Extracellular Traps/drug effects , Humans , Incidence , Injury Severity Score , Multicenter Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Respiration, Artificial/adverse effects , Wounds and Injuries/physiopathology
8.
Eur J Trauma Emerg Surg ; 46(4): 751-775, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31612270

ABSTRACT

In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.


Subject(s)
Alarmins/immunology , Biomarkers , Inflammation/immunology , Wounds and Injuries/immunology , Animals , Disease Models, Animal , Humans , Immune System Phenomena
10.
Dtsch Med Wochenschr ; 143(25): 1864-1865, 2018 12.
Article in German | MEDLINE | ID: mdl-30562821

ABSTRACT

The first clinical use of the "Munich antilymphocyte globulin" (ALG) at the occasion of the first successful human heart transplantation is briefly described. The cardiac transplantation was carried out by Christiaan Barnard and his team in Cape Town, South Africa, in 1968. The patient developed an acute allograft rejection which could be successfully reversed within three weeks using the intravenous administration of ALG. This event can be regarded as the beginning of a success story of ALG in its use as a powerful immunosuppressive agent in all categories of clinical organ transplantation.


Subject(s)
Graft Rejection/history , Graft Rejection/therapy , Heart Transplantation/history , Transplantation, Homologous/history , History, 20th Century , Humans
11.
Physiol Rev ; 98(2): 727-780, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29465288

ABSTRACT

When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.


Subject(s)
Cell Death/physiology , Cytokines/immunology , Inflammation/immunology , Necrosis/metabolism , Animals , Apoptosis/physiology , Humans , Signal Transduction/physiology
13.
14.
Front Immunol ; 6: 588, 2015.
Article in English | MEDLINE | ID: mdl-26635802

ABSTRACT

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.

15.
Sultan Qaboos Univ Med J ; 15(2): e157-70, 2015 May.
Article in English | MEDLINE | ID: mdl-26052447

ABSTRACT

This article is the second part of a review that addresses the role of damage-associated molecular patterns (DAMPs) in human diseases by presenting examples of traumatic (systemic inflammatory response syndrome), cardiovascular (myocardial infarction), metabolic (type 2 diabetes mellitus), neurodegenerative (Alzheimer's disease), malignant and infectious diseases. Various DAMPs are involved in the pathogenesis of all these diseases as they activate innate immune machineries including the unfolded protein response and inflammasomes. These subsequently promote sterile autoinflammation accompanied, at least in part, by subsequent adaptive autoimmune processes. This review article discusses the future role of DAMPs in routine practical medicine by highlighting the possibility of harnessing and deploying DAMPs either as biomarkers for the appropriate diagnosis and prognosis of diseases, as therapeutics in the treatment of tumours or as vaccine adjuncts for the prophylaxis of infections. In addition, this article examines the potential for developing strategies aimed at mitigating DAMPs-mediated hyperinflammatory responses, such as those seen in systemic inflammatory response syndrome associated with multiple organ failure.

16.
Exp Clin Transplant ; 13 Suppl 1: 46-54, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25894127

ABSTRACT

Modern immunology, in many ways, is based on 3 major paradigms: the clonal selection theory (Medawar, Burnet; 1953/1959), the pattern recognition theory (Janeway; 1989), and the danger/injury theory (Matzinger, Land; 1994). The last theory holds that any cell stress and tissue injury including allograft injury, via induction of damage-associated molecular patterns, induces immunity including alloimmunity leading to allograft rejection. On the other hand, the concept precludes that "non-self " per se induces immunity as proposed by the two former theories. Today, the danger/injury model has been largely accepted by immunologists, as documented by a steadily increasing number of publications. In particular, overwhelming evidence in support of the correctness of the model has come from recent studies on the gut microbiota representing a huge assemblage of "non-self. " Here, harmless noninjurious commensal microbes are protected by innate immunity-based immune tolerance whereas intestinal injury-causing pathogenic microbes are immunology attacked. The ability of the immune system to discriminate between harmless beneficial "non-self " to induce tolerance and harmful life-threatening "non-self " to induce immunity has apparently emerged during evolution: Protection of innate immunity-controlled beneficial "non-self " (eg, as reflected by microbiotas but also by the fetus of placental mammals) as well as immune defense responses to injuring/injured "non-self " (eg, as reflected by plant resistance to biotic and abiotic stress and allograft rejection in mammals) evolved under pressure across the tree of life, that is, in plants, lower and higher invertebrates as well as lower and higher vertebrates. And evolution tells us why the overall existence of protected microbiotas really makes sense: It is the formation of the "holobiont, " - a metaorganism - that is, the host plus all of its associated microorganisms that - in terms of a strong unit of selection in evolution - provides that kind of fitness to all species on earth to successfully live, survive and reproduce. In other words: "We all evolve, develop, grow, and reproduce as multigenomic ecosystems! Regarding reproduction, another impressive example of active immunologic protection of "nonself " refers to pregnancy in placental mammals that emerged about 400 millions of years ago. Similar to "non-self " microbiotas, pregnancy in placental mammals reflects an evolution-driven phenomenon on the basis of innate immunity-controlled tolerance induction to semiallogeneic non-injuring/non-injured "non-self " aiming to ensure reproduction! Altogether, the lesson learned from evolution of how to avoid allograft rejection is clear: prevent allograft injury to induce allotolerance, in other words: create a "transplant holobiont. ".


Subject(s)
Evolution, Molecular , Graft Rejection/immunology , Graft Survival , Organ Transplantation/adverse effects , Transplantation Tolerance , Animals , Bacteria/immunology , Female , Graft Rejection/metabolism , Graft Rejection/prevention & control , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunity, Mucosal , Intestines/immunology , Intestines/microbiology , Models, Immunological , Placenta/immunology , Pregnancy , Signal Transduction , Treatment Outcome
17.
Sultan Qaboos Univ Med J ; 15(1): e9-e21, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25685392

ABSTRACT

There is increasing interest by physicians in the impact of the innate immune system on human diseases. In particular, the role of the molecules that initiate and amplify innate immune pathways, namely damage-associated molecular patterns (DAMPs), is of interest as these molecules are involved in the pathogenesis of many human disorders. The first part of this review identifies five classes of cell stress/tissue injury-induced DAMPs that are sensed by various recognition receptor-bearing cells of the innate immune system, thereby mounting inflammation, promoting apoptosis and shaping adaptive immune responses. The DAMPs activate and orchestrate several innate immune machineries, including inflammasomes and the unfolded protein response that synergistically operates to induce inflammatory, metabolic and adaptive immune pathologies. Two examples of autoimmune diseases are discussed as they represent a typical paradigm of the intimate interplay between innate and adaptive immune responses.

18.
Front Plant Sci ; 5: 578, 2014.
Article in English | MEDLINE | ID: mdl-25400647

ABSTRACT

Multicellular organisms suffer injury and serve as hosts for microorganisms. Therefore, they require mechanisms to detect injury and to distinguish the self from the non-self and the harmless non-self (microbial mutualists and commensals) from the detrimental non-self (pathogens). Danger signals are "damage-associated molecular patterns" (DAMPs) that are released from the disrupted host tissue or exposed on stressed cells. Seemingly ubiquitous DAMPs are extracellular ATP or extracellular DNA, fragmented cell walls or extracellular matrices, and many other types of delocalized molecules and fragments of macromolecules that are released when pre-existing precursors come into contact with enzymes from which they are separated in the intact cell. Any kind of these DAMPs enable damaged-self recognition, inform the host on tissue disruption, initiate processes aimed at restoring homeostasis, such as sealing the wound, and prepare the adjacent tissues for the perception of invaders. In mammals, antigen-processing and -presenting cells such as dendritic cells mature to immunostimulatory cells after the perception of DAMPs, prime naïve T-cells and elicit a specific adaptive T-/B-cell immune response. We discuss molecules that serve as DAMPs in multiple organisms and their perception by pattern recognition receptors (PRRs). Ca(2+)-fluxes, membrane depolarization, the liberation of reactive oxygen species and mitogen-activated protein kinase (MAPK) signaling cascades are the ubiquitous molecular mechanisms that act downstream of the PRRs in organisms across the tree of life. Damaged-self recognition contains both homologous and analogous elements and is likely to have evolved in all eukaryotic kingdoms, because all organisms found the same solutions for the same problem: damage must be recognized without depending on enemy-derived molecules and responses to the non-self must be directed specifically against detrimental invaders.

19.
Biomed J ; 36(5): 209-28, 2013.
Article in English | MEDLINE | ID: mdl-24225188

ABSTRACT

The innate immune system is a highly sensitive organ of perception sensing any cell stress and tissue injury. Its major type of response to all potential inciting and dangerous challenges is inflammation and tissue repair and, if needed, induction of a supportive adaptive immune response, the aim always being to maintain homeostasis. However, although initially beneficial, innate immunity-mediated, protection-intended repair processes become pathogenic when they are exaggerated and uncontrolled, resulting in permanent fibrosis which replaces atrophic or dying tissue and may lead to organ dysfunction or even failure. In this sense, atherosclerosis and organ fibrosis reflect classical disorders caused by an overreacting innate immune system. Strikingly, these two pathologies dominate the development of chronic allograft dysfunction as the main clinical problem still left in transplantation medicine. Growing evidence suggests that acute and chronic allograft injuries, including alloimmune-, isoimmune-, nonimmune-, and infection-mediated insults, not only lead to cell death-associated graft atrophy but also activate the innate immune system which, over time, leads to uncontrolled intragraft fibrogenesis, thereby compromising allograft function. Acute and chronic allograft injuries lead to induction of damage-associated molecular patterns (DAMPs) which, after recognition by pattern recognition receptors, activate cells of the innate immune system such as donor-derived intragraft fibroblasts and vascular cells as well as recipient-derived graft-invading macrophages and leukocytes. It is mainly the orchestrated action and function of these cells that slowly but steadily metamorphose the originally life-saving allograft into a poorly functioning organ of marginal viability.


Subject(s)
Allografts/immunology , Graft Rejection/immunology , Immunity, Innate/immunology , Allografts/physiology , Animals , Chronic Disease , Graft Rejection/prevention & control , Humans , Immunity, Innate/physiology , Inflammation/immunology , Signal Transduction
20.
Transfus Med Hemother ; 40(1): 3-13, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23637644

ABSTRACT

Current notions in immunology hold that not only pathogen-mediated tissue injury but any injury activates the innate immune system. In principle, this evolutionarily highly conserved, rapid first-line defense system responds to pathogen-induced injury with the creation of infectious inflammation, and non-pathogen-induced tissue injury with 'sterile' tissue inflammation. In this review, evidence has been collected in support of the notion that the transfusion-related acute lung injury induces a 'sterile' inflammation in the lung of transfused patients in terms of an acute innate inflammatory disease. The inflammatory response is mediated by the patient's innate immune cells including lung-passing neutrophils and pulmonary endothelial cells, which are equipped with pattern recognition receptors. These receptors are able to sense injury-induced, damage-associated molecular patterns (DAMPs) generated during collection, processing, and storage of blood/blood components. The recognition process leads to activation of these innate cells. A critical role for a protein complex known as the NLRP3 inflammasome has been suggested to be at the center of such a scenario. This complex undergoes an initial 'priming' step mediated by 1 class of DAMPs and then an 'activating' step mediated by another class of DAMPs to activate interleukin-1beta and interleukin-18. These 2 cytokines then promote, via transactivation, the formation of lung inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...