Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(1): e2212987120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574700

ABSTRACT

Many receptors signal upon phosphorylation of tyrosine-based motifs in their cytosolic tail, with intrinsic disorder as a common feature. Studies on CD3ζ and CD3ε tails, which are disordered and polybasic, suggested regulation of phosphorylation through accessibility of tyrosines, governed by electrostatic interactions with membrane anionic lipids. We noticed characteristics of intrinsic disorder and previously unappreciated features in tyrosine-based motif-bearing cytosolic tails of many, especially, inhibitory receptors. They are neutral or acidic polyampholytes, with acidic and basic residues linearly segregated. To explore roles of these electrostatic features, we studied inhibitory killer-cell immunoglobulin-like receptor (KIR). Its cytosolic tail is a disordered neutrally charged polyampholyte, wherein juxtamembrane and membrane distal stretches are basic, and the intervening stretch is acidic. Despite lacking net charge, it interacted electrostatically with the plasma membrane. The juxtamembrane stretch was crucial for overall binding, which sequestered tyrosines in the lipid bilayer and restrained their constitutive phosphorylation. Human leukocyte antigen-C ligand binding to KIR released its tail from the plasma membrane to initiate signaling. Tail release occurred independently of KIR polymerization, clustering, or tyrosine phosphorylation, but required acidic residues of the acidic stretch. Tail interaction with the plasma membrane dictated signaling strength of KIR. These results revealed an electrostatic protein-lipid interaction that is unusual in being governed by segregated clusters of acidic and basic residues in polyampholytic disordered region of protein. In contrast to previously known, segregated distribution of oppositely charged residues made both binding and unbinding modules inherent to receptor tail, which could make the interaction an independent signaling switch.


Subject(s)
Receptors, KIR , Signal Transduction , Humans , Static Electricity , Cell Membrane , Phosphorylation , Membrane Lipids , Tyrosine/chemistry
2.
Int J Mol Sci ; 21(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992741

ABSTRACT

Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.


Subject(s)
Exosomes/metabolism , MicroRNAs/metabolism , Retina/metabolism , Retinal Neoplasms , Retinoblastoma , Cell Line , Eye Neoplasms/diagnosis , Eye Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Retina/pathology , Retinal Neoplasms/diagnosis , Retinal Neoplasms/metabolism , Retinoblastoma/diagnosis , Retinoblastoma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL