Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(5): 2641-2651, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35425293

ABSTRACT

Halogen bonding is rapidly becoming recognized as a viable and useful intermolecular interaction in supramolecular chemistry. While various monomers amenable to radical polymerization methods containing halogen bonding donors have been developed, this study aims to expand the type of monomers that incorporate this intermolecular interaction to facilitate use of cationic polymerization by developing three novel vinyl ether monomers containing halogen bonding donor moieties: 2,3,5,6-tetrafluoro-4-iodophenoxyethyl vinyl ether (C2I), 2,3,5,6-tetrafluoro-4-iodophenoxybutyl vinyl ether (C4I), and 2-(2,3,5,6-tetrafluoro-4-iodophenoxyethoxy)ethyl vinyl ether (O3I). Well controlled cationic polymerization is achievable through the use of a proton trap, 2,6-di-tert-butylpyridine. The use of SnCl4 as a co-Lewis acid was found to accelerate the reaction. Between the three monomers, the difference in the chain length is shown to influence the reaction rate, with the longest chain demonstrating the fastest polymerization. Initial studies of the halogen bonding ability shows that halogen bonding exists for all three monomers but is most pronounced in C4I. The polymerized vinyl ethers also exhibit halogen bonding. Due to the ease of synthesis and polymerization, these are promising new monomers to increase functionality available for polymers synthesized using cationic polymerization.

2.
Langmuir ; 35(33): 10846-10854, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31355647

ABSTRACT

Core-shell polymer-silica hybrid nanoparticles smaller than 50 nm in diameter were formed in the presence of micelles of poly(2-aminoethyl vinyl ether-block-isobutyl vinyl ether) (poly(AEVEm-b-IBVEn)) through the hydrolysis and polycondensation of alkoxysilane in aqueous solution at a mild pH and temperature. The size of the nanoparticles as well as the number and size of the core parts were effectively controlled by varying the molecular weight of the copolymers. The polymers could be removed by calcination to give hollow silica nanoparticles with Brunauer-Emmett-Teller surface areas of more than 500 m2 g-1. Among these, silica nanoparticles formed with poly(AEVE115-b-IBVE40) displayed an anisotropy of single openings in the shell. The use of an alternative copolymer, poly(AEVE-b-2-naphthoxyethyl vinyl ether) (poly(AEVE113-b-ßNpOVE40)), yielded core-shell nanoparticles with less pronounced anisotropy. These results showed that the degree of anisotropy could be controlled by the rigidity of micelles; the micelle of poly(AEVE115-b-IBVE40) was more deformable during silica deposition than that of poly(AEVE113-b-ßNpOVE40) in which aromatic interactions were possible. This bioinspired, environmentally friendly approach will enable large-scale production of anisotropic silica nanomaterials, opening up applications in the field of nanomedicine, optical materials, and self-assembly.

3.
Langmuir ; 34(26): 7751-7758, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29878793

ABSTRACT

Block copolymer-mediated self-assembly of colloidal nanoparticles has attracted great attention for the fabrication of a wide variety of nanoparticle arrays. We have previously shown that silica nanospheres (SNSs) 15 nm in diameter assemble into ring-like nanostructures in the presence of amphiphilic block copolymers poly[(2-ethoxyethyl vinyl ether)- block-(2-methoxyethyl vinyl ether)] (EOVE-MOVE) in an aqueous phase. Here, the effects of particle size of SNSs on this polymer-mediated self-assembly are studied systematically using scanning electron microscopy to observe SNSs of seven different sizes between 13 to 42 nm. SNSs of 13, 16, 19, and 21 nm in diameter assemble into nanorings in the presence of EOVE-MOVE. In contrast, larger SNSs of 26, 34, and 42 nm aggregate heavily, form chain-like networks, and remain dispersed, respectively, instead of forming ring-like nanostructures. The assembly trend for 26-42 nm-SNSs agrees with that expected from the increased colloidal stability for larger particles. Time-course observation for the assembled morphology of 16 nm-SNSs reveals that the nanorings, once formed, assemble further into network-like structures, as if the nanorings behave as building units for higher-order assembly. This indicates that the ring-like assembly is a fast process that can proceed onto random colloidal aggregation. Detailed analysis of nanoring structures revealed that the average number of SNSs comprising one ring decreased from 5.0 to 3.1 with increasing the SNS size from 13 to 21 nm. A change in the number of ring members was also observed when the length of EOVE-MOVE varied while the size of SNSs was fixed. Dynamic light scattering measurements and atomic force microscopy confirmed the SNSs/polymer composite structures. We hypothesize that a stable composite morphology may exist that is influenced by both the size of SNSs and the polymer molecular structures.

4.
J Am Chem Soc ; 137(15): 5074-9, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25844557

ABSTRACT

Here we report a series of energetic-energetic cocrystals that incorporate the primary explosive diacetone diperoxide (DADP) with a series of trihalotrinitrobenzene explosives: 1:1 DADP/1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB), 1:1 DADP/1,3,5-tribromo-2,4,6-trinitrobenzene (TBTNB), and 1:1 DADP/1,3,5-triiodo-2,4,6-trinitrobenzene (TITNB). Acetone peroxides are attractive for their inexpensive and facile synthesis, but undesirable properties such as poor stability, intractably high sensitivity and low density, an indicator for low explosive power, have limited their application. Here through cocrystallization the density, oxygen balance, and stability of DADP are dramatically improved. Regarding sensitivity, in the case of the DADP/TCTNB cocrystal, the high impact sensitivity of DADP is retained by the cocrystal, making it a denser and less volatile form of DADP that remains viable as a primary explosive. Conversely, the DADP/TITNB cocrystal features impact sensitivity that is greatly reduced relative to both pure DADP and pure TITNB, demonstrating for the first time an energetic cocrystal that is less sensitive to impact than either of its pure components. This dramatic difference in cocrystal sensitivities may stem from the significantly different halogen-peroxide interactions seen in each cocrystal structure. These results highlight how sensitivity is defined by complex relationships between inherent bond strengths and solid-state properties, and cocrystal series such as that presented here provide a powerful experimental platform to probe this relationship.

6.
J Am Chem Soc ; 133(42): 16714-7, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-21630658

ABSTRACT

The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) has gained much attention as this reaction provides a paradigm as to how NO can be detoxified anaerobically in cells. However, a clear mechanistic picture of how the heme/non-heme active site of NorBC activates NO is lacking, mostly as a result of insufficient knowledge about the properties of the non-heme iron(II)-NO adduct. Here we report the first biomimetic model complexes for this species that closely resemble the coordination environment found in the protein, using the ligands BMPA-Pr and TPA. The systematic investigation of these compounds allowed us to gain key insight into the electronic structure and geometric properties of high-spin non-heme iron(II)-NO adducts. In particular, we show how small changes in the ligand environment of iron could be used by NorBC to greatly modulate the properties, and hence, the reactivity of this species.


Subject(s)
Electrons , Ferrous Compounds/chemistry , Models, Biological , Nitric Oxide/chemistry , Organometallic Compounds/chemistry , Oxidoreductases/chemistry , Bacteria/metabolism , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...