Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Rep ; 19(5): 1008-1021, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28467895

ABSTRACT

The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.


Subject(s)
Aspergillus/metabolism , Copper/metabolism , Host-Pathogen Interactions , Reactive Oxygen Species/metabolism , Animals , Aspergillus/genetics , Aspergillus/pathogenicity , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Fungal Proteins/genetics , Fungal Proteins/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , P-type ATPases/genetics , P-type ATPases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...