Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 47(25): 6420-32, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566311

ABSTRACT

Vascular cell adhesion molecule-1 (VCAM-1) mediates recruitment of leukocytes to endothelial cells and is implicated in many inflammatory conditions. Since part of the signal transduction pathway that regulates the activation of VCAM-1 expression is redox-sensitive, compounds with antioxidant properties may have inhibitory effects on VCAM-1 expression. Novel phenolic compounds have been designed and synthesized starting from probucol (1). Many of these compounds demonstrated potent inhibitory effects on cytokine-induced VCAM-1 expression and displayed potent antioxidant effects in vitro. Some of these derivatives (4o, 4p, 4w, and 4x) inhibited lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and IL-6 from human peripheral blood mononuclear cells (hPBMCs) in a concentration-dependent manner in vitro and showed antiinflammatory effects in an animal model. Compounds 4ad and 4ae are currently in clinical trials for the treatment of rheumatoid arthritis (RA) and prevention of chronic organ transplant rejection, respectively.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Antioxidants/chemical synthesis , Phenols/chemical synthesis , Sulfides/chemical synthesis , Vascular Cell Adhesion Molecule-1/biosynthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cells, Cultured , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Chronic Disease , Cricetinae , Depression, Chemical , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Inflammation/drug therapy , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Mice , Mice, Inbred BALB C , Phenols/chemistry , Phenols/pharmacology , Probucol/chemistry , Structure-Activity Relationship , Sulfides/chemistry , Sulfides/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
2.
J Pharmacol Exp Ther ; 305(3): 1116-23, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12626663

ABSTRACT

To explore the therapeutic efficacy and potential mechanisms of action of a new class of antiatherosclerotic drugs, AGI-1067 [mono[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenyl] ester] (butanedioc acid) was tested in several animal models of atherosclerosis. AGI-1067, a novel phenolic antioxidant, was well tolerated in a 1-year study in hypercholesterolemic cynomolgus monkeys. It lowered low-density lipoprotein cholesterol (LDLc) by 41 and 90% at oral doses of 50 and 150 mg/kg, respectively and increased high-density lipoprotein cholesterol (HDLc) by 107% at the higher dose. In contrast, another phenolic antioxidant, probucol, had a modest LDLc-lowering effect (15% at 250 mg/kg) while decreasing HDLc (37% at 150 mg/kg). Histopathology of the aortas and coronary arteries revealed no atherosclerosis in the AGI-1067 (150 mg/kg) group and minimal-to-moderate atherosclerosis in the vehicle and probucol (150 mg/kg) groups. AGI-1067 also inhibited atherosclerosis in LDL receptor-deficient (LDLr -/-) mice and apolipoprotein E-deficient (ApoE -/-) mice even in the absence of a lipid-lowering effect. In LDLr -/- mice, AGI-1067 reduced aortic atherosclerosis by 49%. In ApoE -/- mice, AGI-1067 reduced atherosclerosis by 25, 41, and 49% in the arch, thoracic, and abdominal regions of the aorta. AGI-1067 also reduced vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) mRNA levels in lungs of lipopolysaccharide-stimulated mice. At the cellular level, AGI-1067 inhibited tumor necrosis factor-alpha-inducible expression of VCAM-1, MCP-1, and E-selectin in human aortic endothelial cells (IC50 values = 6, 10, and 25 microM, respectively). These data show that AGI-1067 can inhibit atherosclerosis not only via its lipid-lowering effects but also by having direct anti-inflammatory effects on the vessel wall and suggest that it may be a novel therapeutic agent for coronary artery disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anticholesteremic Agents/pharmacology , Antioxidants/pharmacology , Lipid Metabolism , Probucol/pharmacology , Animals , Arteriosclerosis/prevention & control , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Macaca fascicularis , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Probucol/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...