Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 66(4): 1371-1378, 2018.
Article in English | MEDLINE | ID: mdl-30412490

ABSTRACT

Aging is the leading risk factor for idiopathic Alzheimer's disease (AD), indicating that normal aging processes promote AD and likely are present in the neurons in which AD pathogenesis originates. In AD, neurofibrillary tangles (NFTs) appear first in entorhinal cortex, implying that aging processes in entorhinal neurons promote NFT pathogenesis. Using electrophysiology and immunohistochemistry, we find pronounced aging-related Ca2 + dysregulation in rat entorhinal neurons homologous with the human neurons in which NFTs originate. Considering that humans recapitulate many aspects of animal brain aging, these results support the hypothesis that aging-related Ca2 + dysregulation occurs in human entorhinal neurons and promotes NFT pathogenesis.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Entorhinal Cortex/metabolism , Neurons/metabolism , Alzheimer Disease/pathology , Animals , Entorhinal Cortex/pathology , Male , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/pathology , Rats , Rats, Inbred F344
2.
J Neurosci ; 38(4): 1030-1041, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29255009

ABSTRACT

Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly to each other and young controls (YCs). Transcriptional profiling in the same animals identified 2342 genes with hippocampal expression that was upregulated/downregulated in aged controls (ACs) compared with YCs (the aging effect). Of these aging-dependent genes, 876 (37%) also showed altered expression in aged FKBP1b-treated rats compared with ACs, with FKBP1b restoring expression of essentially all such genes (872/876, 99.5%) in the direction opposite the aging effect and closer to levels in YCs. This inverse relationship between the aging and FKBP1b effects suggests that the aging effects arise from FKBP1b deficiency. Functional category analysis revealed that genes downregulated with aging and restored by FKBP1b were associated predominantly with diverse brain structure categories, including cytoskeleton, membrane channels, and extracellular region. Conversely, genes upregulated with aging but not restored by FKBP1b associated primarily with glial-neuroinflammatory, ribosomal, and lysosomal categories. Immunohistochemistry confirmed aging-induced rarefaction and FKBP1b-mediated restoration of neuronal microtubular structure. Therefore, a previously unrecognized genomic network modulating diverse brain structural processes is dysregulated by aging and restored by FKBP1b overexpression.SIGNIFICANCE STATEMENT Previously, we found that hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of intracellular Ca2+ responses, reverses both aging-related Ca2+ dysregulation and cognitive impairment. Here, we tested whether hippocampal FKBP1b overexpression also counteracts aging changes in gene transcriptional networks. In addition to reducing memory deficits in aged rats, FKBP1b selectively counteracted aging-induced expression changes in 37% of aging-dependent genes, with cytoskeletal and extracellular structure categories highly associated with the FKBP1b-rescued genes. Our results indicate that, in parallel with cognitive processes, a novel transcriptional network coordinating brain structural organization is dysregulated with aging and restored by FKBP1b.


Subject(s)
Aging/physiology , Gene Expression Regulation/physiology , Hippocampus/metabolism , Memory/physiology , Tacrolimus Binding Proteins/metabolism , Animals , Calcium Signaling/physiology , Hippocampus/physiopathology , Male , Memory Disorders/physiopathology , Rats , Rats, Inbred F344 , Rats, Transgenic
3.
J Neurosci ; 35(30): 10878-87, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26224869

ABSTRACT

Brain Ca2+ regulatory processes are altered during aging, disrupting neuronal, and cognitive functions. In hippocampal pyramidal neurons, the Ca2+ -dependent slow afterhyperpolarization (sAHP) exhibits an increase with aging, which correlates with memory impairment. The increased sAHP results from elevated L-type Ca2+ channel activity and ryanodine receptor (RyR)-mediated Ca2+ release, but underlying molecular mechanisms are poorly understood. Previously, we found that expression of the gene encoding FK506-binding protein 12.6/1b (FKBP1b), a small immunophilin that stabilizes RyR-mediated Ca2+ release in cardiomyocytes, declines in hippocampus of aged rats and Alzheimer's disease subjects. Additionally, knockdown/disruption of hippocampal FKBP1b in young rats augments neuronal Ca2+ responses. Here, we test the hypothesis that declining FKBP1b underlies aging-related hippocampal Ca2+ dysregulation. Using microinjection of adeno-associated viral vector bearing a transgene encoding FKBP1b into the hippocampus of aged male rats, we assessed the critical prediction that overexpressing FKBP1b should reverse Ca2+ -mediated manifestations of brain aging. Immunohistochemistry and qRT-PCR confirmed hippocampal FKBP1b overexpression 4-6 weeks after injection. Compared to aged vector controls, aged rats overexpressing FKBP1b showed dramatic enhancement of spatial memory, which correlated with marked reduction of sAHP magnitude. Furthermore, simultaneous electrophysiological recording and Ca2+ imaging in hippocampal neurons revealed that the sAHP reduction was associated with a decrease in parallel RyR-mediated Ca2+ transients. Thus, hippocampal FKBP1b overexpression reversed key aspects of Ca2+ dysregulation and cognitive impairment in aging rats, supporting the novel hypothesis that declining FKBP1b is a molecular mechanism underlying aging-related Ca2+ dysregulation and unhealthy brain aging and pointing to FKBP1b as a potential therapeutic target. SIGNIFICANCE STATEMENT: This paper reports critical tests of a novel hypothesis that proposes a molecular mechanism of unhealthy brain aging and possibly, Alzheimer's disease. For more than 30 years, evidence has been accumulating that brain aging is associated with dysregulation of calcium in neurons. Recently, we found that FK506-binding protein 12.6/1b (FKBP1b), a small protein that regulates calcium, declines with aging in the hippocampus, a brain region important for memory. Here we used gene therapy approaches and found that raising FKBP1b reversed calcium dysregulation and memory impairment in aging rats, allowing them to perform a memory task as well as young rats. These studies identify a potential molecular mechanism of brain aging and may also have implications for treatment of Alzheimer's disease.


Subject(s)
Aging/physiology , Calcium/metabolism , Cognition/physiology , Neurons/metabolism , Tacrolimus Binding Proteins/metabolism , Animals , Cognition Disorders/etiology , Cognition Disorders/metabolism , Hippocampus/metabolism , Immunohistochemistry , Male , Patch-Clamp Techniques , Rats , Rats, Inbred F344 , Rats, Transgenic , Real-Time Polymerase Chain Reaction , Transgenes
4.
Proc Natl Acad Sci U S A ; 111(41): E4359-66, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267625

ABSTRACT

Vitamin D is an important calcium-regulating hormone with diverse functions in numerous tissues, including the brain. Increasing evidence suggests that vitamin D may play a role in maintaining cognitive function and that vitamin D deficiency may accelerate age-related cognitive decline. Using aging rodents, we attempted to model the range of human serum vitamin D levels, from deficient to sufficient, to test whether vitamin D could preserve or improve cognitive function with aging. For 5-6 mo, middle-aged F344 rats were fed diets containing low, medium (typical amount), or high (100, 1,000, or 10,000 international units/kg diet, respectively) vitamin D3, and hippocampal-dependent learning and memory were then tested in the Morris water maze. Rats on high vitamin D achieved the highest blood levels (in the sufficient range) and significantly outperformed low and medium groups on maze reversal, a particularly challenging task that detects more subtle changes in memory. In addition to calcium-related processes, hippocampal gene expression microarrays identified pathways pertaining to synaptic transmission, cell communication, and G protein function as being up-regulated with high vitamin D. Basal synaptic transmission also was enhanced, corroborating observed effects on gene expression and learning and memory. Our studies demonstrate a causal relationship between vitamin D status and cognitive function, and they suggest that vitamin D-mediated changes in hippocampal gene expression may improve the likelihood of successful brain aging.


Subject(s)
Aging/pathology , Cognition Disorders/prevention & control , Cognition Disorders/physiopathology , Hippocampus/physiopathology , Synaptic Transmission , Vitamin D/therapeutic use , Aging/drug effects , Animals , Cognition Disorders/drug therapy , Diet , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Maze Learning/drug effects , Models, Neurological , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats, Inbred F344 , Response Elements/genetics , Software , Synaptic Transmission/drug effects , Up-Regulation/drug effects , Vitamin D/blood , Vitamin D/pharmacology
5.
Eur J Pharmacol ; 719(1-3): 34-43, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-23872402

ABSTRACT

Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.


Subject(s)
Aging/metabolism , Calcium/metabolism , Diabetes Mellitus/metabolism , Hippocampus/metabolism , Aging/physiology , Animals , Cognition , Diabetes Mellitus/physiopathology , Hippocampus/physiopathology , Humans , Insulin/metabolism
6.
Endocrinology ; 154(8): 2807-20, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23736296

ABSTRACT

Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the long-standing hypothesis that chronic GC exposure promotes brain aging/Alzheimer disease. Here, we adrenalectomized male F344 rats at 15 months of age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid receptor-activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between intermediate and low CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT-up-regulated genes included learning/plasticity, differentiation, glucose metabolism, and cholesterol biosynthesis, whereas processes overrepresented by CORT-down-regulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC transcriptome with a previously defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same direction, the majority were shifted in opposite directions by CORT and aging (eg, glial inflammatory genes down-regulated by CORT are up-regulated with aging). These results contradict the hypothesis that GCs simply promote brain aging and also suggest that the opposite direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways, whereas GC overstimulation develops in others, together generating much of the brain aging phenotype.


Subject(s)
CA1 Region, Hippocampal/metabolism , Corticosterone/pharmacology , Glucocorticoids/pharmacology , Transcriptome/drug effects , Adrenalectomy , Aging/genetics , Animals , Body Weight/drug effects , Corticosterone/blood , Drinking/drug effects , Drug Implants , Eating/drug effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Male , Oligonucleotide Array Sequence Analysis , Rats , Rats, Inbred F344 , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics
7.
Neurobiol Aging ; 34(8): 1977-87, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23545425

ABSTRACT

The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether a high-fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation). Young and mid-aged animals were maintained on control or HFD for 4.5 months, and peripheral metabolic variables, cognitive function, and electrophysiological responses to insulin in the hippocampus were measured. HFD increased lipid accumulation in the periphery, although overt diabetes did not develop, nor were spatial learning and memory altered. Hippocampal adiponectin levels were reduced in aging animals but were unaffected by HFD. For the first time, however, we show that the AHP is sensitive to insulin, and that this sensitivity is reduced by HFD. Interestingly, although peripheral glucose regulation was relatively insensitive to HFD, the brain appeared to show greater sensitivity to HFD in F344 rats.


Subject(s)
Aging/metabolism , Aging/physiology , Cognition , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Hippocampus/physiopathology , Memory Disorders/etiology , Memory Disorders/psychology , Adiponectin/metabolism , Aging/psychology , Animals , Calcium/metabolism , Diabetes Mellitus, Type 2/etiology , Disease Progression , Male , Memory Disorders/metabolism , Obesity/etiology , Rats , Rats, Inbred F344 , Risk Factors
8.
J Gerontol A Biol Sci Med Sci ; 67(7): 754-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22570133

ABSTRACT

There is increasing evidence from basic science and human epidemiological studies that inflammation, oxidative stress, and metabolic abnormalities are associated with age-related cognitive decline and impairment. This article summarizes selected research on these topics presented at the Cognitive Aging Summit II. Speakers in this session presented evidence highlighting the roles of these processes and pathways on age-related cognitive decline, pointing to possible targets for intervention in nondemented older adults. Specific areas discussed included age differences in the production of cytokines following injury or infection, mechanisms underlying oxidative stress-induced changes in memory consolidation, insulin effects on brain signaling and memory, and the association between metabolic syndrome and cognitive decline in older adults. These presentations emphasize advances in our understanding of mechanisms and modifiers of age-related cognitive decline and provide insights into potential targets to promote cognitive health in older adults.


Subject(s)
Aging/psychology , Cognition Disorders/etiology , Inflammation/complications , Metabolic Syndrome/complications , Oxidative Stress , Aged , Aging/physiology , Animals , Brain/physiology , Calcium/metabolism , Cognition Disorders/metabolism , Hippocampus/physiology , Humans , Insulin/physiology , Microglia/physiology , Receptors, N-Methyl-D-Aspartate/physiology
9.
J Alzheimers Dis ; 30(4): 943-61, 2012.
Article in English | MEDLINE | ID: mdl-22495349

ABSTRACT

Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. Starting at 10 months of age, the triple transgenic mouse model of AD (3xTg-AD) with accelerated amyloid-ß (Aß) deposition and tau pathology was treated with the TZD pioglitazone (PIO-Actos) at 18 mg/Kg body weight/day. After four months, PIO-treated animals showed multiple beneficial effects, including improved learning on the active avoidance task, reduced serum cholesterol, decreased hippocampal amyloid-ß and tau deposits, and enhanced short- and long-term plasticity. Electrophysiological membrane properties and post-treatment blood glucose levels were unchanged by PIO. Gene microarray analyses of hippocampal tissue identified predicted transcriptional responses following TZD treatment as well as potentially novel targets of TZDs, including facilitation of estrogenic processes and decreases in glutamatergic and lipid metabolic/cholesterol dependent processes. Taken together, these results confirm prior animal studies showing that TZDs can ameliorate cognitive deficits associated with AD-related pathology, but also extend these findings by pointing to novel molecular targets in the brain.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Learning/drug effects , Thiazolidinediones/administration & dosage , Alzheimer Disease/psychology , Animals , Biomarkers/blood , Brain Chemistry/drug effects , Brain Chemistry/physiology , Disease Models, Animal , Drug Administration Schedule , Female , Learning/physiology , Mice , Mice, Transgenic , Pioglitazone , Time Factors
10.
Biochim Biophys Acta ; 1822(4): 546-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22265986

ABSTRACT

Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca(2+) dysregulation can differ substantially between animal models of normal aging and models of pathological aging.


Subject(s)
Alzheimer Disease/physiopathology , Calcium Channels, L-Type/physiology , Disease Models, Animal , Neurons/physiology , Animals , Male , Mice , Mice, Transgenic
11.
PLoS One ; 6(10): e26812, 2011.
Article in English | MEDLINE | ID: mdl-22046366

ABSTRACT

Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.


Subject(s)
Aging/physiology , Brain/physiopathology , Cardiovascular Physiological Phenomena , Neuroglia/pathology , Physical Conditioning, Animal/physiology , Animals , Biomarkers , Brain/blood supply , Brain/pathology , Female , Mice
12.
J Chem Neuroanat ; 42(2): 118-26, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21756998

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that threatens to reach epidemic proportions as our population ages. Although much research has examined molecular pathways associated with AD, relatively few such studies have focused on the disease's critical early stages. In a prior microarray study we correlated gene expression in hippocampus with degree of Alzheimer's disease and found close associations between upregulation of apparent glial transcription factor/epigenetic/tumor suppressor genes and incipient AD. The results suggested a new model in which AD pathology spreads along myelinated axons (Blalock et al., 2004). However, the microarray analyses were performed on RNA extracted from frozen hand-dissected hippocampal CA1 tissue blocks containing both gray and white matter, limiting the confidence with which transcriptional changes in gray matter could be distinguished from those in white matter. Here, we used laser capture microdissection (LCM) to exclude major white matter tracts while selectively collecting CA1 hippocampal gray matter from formalin-fixed, paraffin-embedded (FFPE) hippocampal sections of the same subjects assessed in our prior study. Microarray analyses of this gray matter-enriched tissue revealed many transcriptional changes similar to those seen in our past study and in studies by others, particularly for downregulated neuron-related genes. Additionally, the present analyses identified several previously undetected pathway alterations, including downregulation of molecules that stabilize ryanodine receptor Ca2+ release and upregulation of vasculature development. Conversely, we found a striking paucity of the upregulated changes in the putative glial and growth-related genes that had been strongly overrepresented in the prior mixed-tissue study. We conclude that FFPE tissue can be a reliable resource for microarray studies of brain tissue, that upregulation of growth-related epigenetic/transcription factors during incipient AD is predominantly localized in and around white matter (supporting our prior findings and model), and that novel alterations in vascular and ryanodine receptor-related pathways in gray matter are closely associated with incipient AD.


Subject(s)
Alzheimer Disease/pathology , Axons/pathology , Hippocampus/pathology , Laser Capture Microdissection/methods , Neurons/pathology , Oligonucleotide Array Sequence Analysis/methods , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Axons/metabolism , Biomarkers/metabolism , Calcium Signaling/physiology , Epigenesis, Genetic/genetics , Female , Hippocampus/metabolism , Humans , Male , Neovascularization, Physiologic/physiology , Nerve Growth Factors/genetics , Neural Pathways/metabolism , Neural Pathways/pathology , Neurons/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Transcription Factors/genetics
13.
J Neurosci ; 31(5): 1693-703, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21289178

ABSTRACT

With aging, multiple Ca(2+)-associated electrophysiological processes exhibit increased magnitude in hippocampal pyramidal neurons, including the Ca(2+)-dependent slow afterhyperpolarization (sAHP), L-type voltage-gated Ca(2+) channel (L-VGCC) activity, Ca(2+)-induced Ca(2+) release (CICR) from ryanodine receptors (RyRs), and Ca(2+) transients. This pattern of Ca(2+) dysregulation correlates with reduced neuronal excitability/plasticity and impaired learning/memory and has been proposed to contribute to unhealthy brain aging and Alzheimer's disease. However, little is known about the underlying molecular mechanisms. In cardiomyocytes, FK506-binding protein 1b/12.6 (FKBP1b) binds and stabilizes RyR2 in the closed state, inhibiting RyR-mediated Ca(2+) release. Moreover, we recently found that hippocampal Fkbp1b expression is downregulated, whereas Ryr2 and Frap1/Mtor (mammalian target of rapamycin) expression is upregulated with aging in rats. Here, we tested the hypothesis that disrupting FKBP1b function also destabilizes Ca(2+) homeostasis in hippocampal neurons and is sufficient to induce the aging phenotype of Ca(2+) dysregulation in young animals. Selective knockdown of Fkbp1b with interfering RNA in vitro (96 h) enhanced voltage-gated Ca(2+) current in cultured neurons, whereas in vivo Fkbp1b knockdown by microinjection of viral vector (3-4 weeks) dramatically increased the sAHP in hippocampal slice neurons from young-adult rats. Rapamycin, which displaces FKBP1b from RyRs in myocytes, similarly enhanced VGCC current and the sAHP and also increased CICR. Moreover, FKBP1b knockdown in vivo was associated with upregulation of RyR2 and mTOR protein expression. Thus, disruption of FKBP1b recapitulated much of the Ca(2+)-dysregulation aging phenotype in young rat hippocampus, supporting a novel hypothesis that declining FKBP function plays a major role in unhealthy brain aging.


Subject(s)
Aging/metabolism , Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hippocampus/physiopathology , Pyramidal Cells/physiopathology , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/metabolism , Aging/genetics , Animals , Cells, Cultured , Electrophysiology , Gene Knockdown Techniques , Genetic Vectors , Hippocampus/metabolism , Homeostasis/drug effects , Immunohistochemistry , Male , Membrane Potentials/drug effects , Microinjections , Patch-Clamp Techniques , Polymerase Chain Reaction , Pyramidal Cells/metabolism , Rats , Rats, Inbred F344 , Sirolimus/pharmacology , Tacrolimus Binding Proteins/genetics
14.
J Neurosci ; 30(17): 6058-71, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20427664

ABSTRACT

Age-dependent metabolic syndrome (MetS) is a well established risk factor for cardiovascular disease, but it also confers major risk for impaired cognition in normal aging or Alzheimer's disease (AD). However, little is known about the specific pathways mediating MetS-brain interactions. Here, we performed the first studies quantitatively linking MetS variables to aging changes in brain genome-wide expression and mitochondrial function. In six young adult and six aging female rhesus monkeys, we analyzed gene expression in two major hippocampal subdivisions critical for memory/cognitive function [hippocampus proper, or cornu ammonis (CA), and dentate gyrus (DG)]. Genes that changed with aging [aging-related genes (ARGs)] were identified in each region. Serum variables reflecting insulin resistance and dyslipidemia were used to construct a quantitative MetS index (MSI). This MSI increased with age and correlated negatively with hippocampal mitochondrial function (state III oxidation). More than 2000 ARGs were identified in CA and/or DG, in approximately equal numbers, but substantially more ARGs in CA than in DG were correlated selectively with the MSI. Pathways represented by MSI-correlated ARGs were determined from the Gene Ontology Database and literature. In particular, upregulated CA ARGs representing glucocorticoid receptor (GR), chromatin assembly/histone acetyltransferase, and inflammatory/immune pathways were closely associated with the MSI. These results suggest a novel model in which MetS is associated with upregulation of hippocampal GR-dependent transcription and epigenetic coactivators, contributing to decreased mitochondrial function and brain energetic dysregulation. In turn, these MSI-associated neuroenergetic changes may promote inflammation, neuronal vulnerability, and risk of cognitive impairment/AD.


Subject(s)
Aging/genetics , Aging/metabolism , Dentate Gyrus/metabolism , Gene Expression , Hippocampus/metabolism , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Aging/blood , Animals , Databases, Genetic , Dyslipidemias/blood , Dyslipidemias/genetics , Dyslipidemias/metabolism , Female , Insulin/metabolism , Insulin Resistance , Macaca mulatta , Metabolic Syndrome/blood , Mitochondria/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction , Species Specificity
15.
Neurobiol Aging ; 31(2): 328-38, 2010 Feb.
Article in English | MEDLINE | ID: mdl-18471936

ABSTRACT

Previous studies have shown that inhibition of the Ca(2+)-/calmodulin-dependent protein phosphatase calcineurin (CN) blocks L-type voltage sensitive Ca(2+) channel (L-VSCC) activity in cultured hippocampal neurons. However, it is not known whether CN contributes to the increase in hippocampal L-VSCC activity that occurs with aging in at least some mammalian species. It is also unclear whether CN's necessary role in VSCC activity is simply permissive or is directly enhancing. To resolve these questions, we used partially dissociated hippocampal "zipper" slices to conduct cell-attached patch recording and RT-PCR on largely intact single neurons from young-adult, mid-aged, and aged rats. Further, we tested for direct CN enhancement of L-VSCCs using virally mediated infection of cultured neurons with an activated form of CN. Similar to previous work, L-VSCC activity was elevated in CA1 neurons of mid-aged and aged rats relative to young adults. The CN inhibitor, FK-506 (5muM) completely blocked the aging-related increase in VSCC activity, reducing the activity level in aged rat neurons to that in younger rat neurons. However, aging was not associated with an increase in neuronal CN mRNA expression, nor was CN expression correlated with VSCC activity. Delivery of activated CN to primary hippocampal cultures induced an increase in neuronal L-VSCC activity but did not elevate L-VSCC protein levels. Together, the results provide the first evidence that CN activity, but not increased expression, plays a selective and necessary role in the aging-related increase in available L-VSCCs, possibly by direct activation. Thus, these studies point to altered CN function as a novel and potentially key factor in aging-dependent neuronal Ca(2+) dysregulation.


Subject(s)
Aging/physiology , CA1 Region, Hippocampal/physiology , Calcineurin/metabolism , Calcium Channels, L-Type/metabolism , Neurons/physiology , Adenoviridae/genetics , Aging/drug effects , Animals , Blotting, Western , CA1 Region, Hippocampal/drug effects , Calcineurin/genetics , Calcineurin Inhibitors , Cells, Cultured , Central Nervous System Agents/pharmacology , Genetic Vectors , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurons/drug effects , Patch-Clamp Techniques , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Tacrolimus/pharmacology
16.
J Neurosci ; 29(19): 6058-67, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19439583

ABSTRACT

An increase in L-type voltage-gated calcium channel (LTCC) current is a prominent biomarker of brain aging and is believed to contribute to cognitive decline and vulnerability to neuropathologies. Studies examining age-related changes in LTCCs have focused primarily on males, although estrogen (17beta-estradiol, E2) affects calcium-dependent activities associated with cognition. Therefore, to better understand brain aging in females, the effects of chronic E2 replacement on LTCC current activity in hippocampal neurons of young and aged ovariectomized rats were determined. The zipper slice preparation was used to expose cornu ammonis 1 (CA1) pyramidal neurons for recording LTCC currents using the cell-attached patch-clamp technique. We found that an age-related increase in LTCC current in neurons from control animals was prevented by E2 treatment. In addition, in situ hybridization revealed that within stratum pyramidale of the CA1 area, mRNA expression of the Ca(v)1.2 LTCC subunit, but not the Ca(v)1.3 subunit, was decreased in aged E2-treated rats. Thus, the reported benefits of E2 on cognition and neuronal health may be attributed, at least in part, to its age-related decrease in LTCC current.


Subject(s)
Aging/physiology , Calcium Channels, L-Type/metabolism , Calcium Channels/metabolism , Estradiol/pharmacology , Estrogen Replacement Therapy , Hippocampus/drug effects , Pyramidal Cells/drug effects , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels, L-Type/genetics , Female , Gene Expression , Hippocampus/cytology , Hippocampus/physiology , In Vitro Techniques , Membrane Potentials/physiology , Ovariectomy , Patch-Clamp Techniques , Pyramidal Cells/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred F344
17.
J Neurosci ; 29(6): 1805-16, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19211887

ABSTRACT

Multiple hippocampal processes and cognitive functions change with aging or Alzheimer's disease, but the potential triggers of these aging cascades are not well understood. Here, we quantified hippocampal expression profiles and behavior across the adult lifespan to identify early aging changes and changes that coincide with subsequent onset of cognitive impairment. Well powered microarray analyses (N = 49 arrays), immunohistochemistry, and Morris spatial maze learning were used to study male F344 rats at five age points. Genes that changed with aging (by ANOVA) were assigned to one of four onset age ranges based on template pattern matching; functional pathways represented by these genes were identified statistically (Gene Ontology). In the earliest onset age range (3-6 months old), upregulation began for genes in lipid/protein catabolic and lysosomal pathways, indicating a shift in metabolic substrates, whereas downregulation began for lipid synthesis, GTP/ATP-dependent signaling, and neural development genes. By 6-9 months of age, upregulation of immune/inflammatory cytokines was pronounced. Cognitive impairment first appeared in the midlife range (9-12 months) and coincided and correlated primarily with midlife upregulation of genes associated with cholesterol trafficking (apolipoprotein E), myelinogenic, and proteolytic/major histocompatibility complex antigen-presenting pathways. Immunolabeling revealed that cholesterol trafficking proteins were substantially increased in astrocytes and that myelination increased with aging. Together, our data suggest a novel sequential model in which an early-adult metabolic shift, favoring lipid/ketone body oxidation, triggers inflammatory degradation of myelin and resultant excess cholesterol that, by midlife, activates cholesterol transport from astrocytes to remyelinating oligodendrocytes. These processes may damage structure and compete with neuronal pathways for bioenergetic resources, thereby impairing cognitive function.


Subject(s)
Aging/metabolism , Cholesterol/metabolism , Cognition/physiology , Hippocampus/metabolism , Memory Disorders/metabolism , Animals , Animals, Newborn , Cognition Disorders/metabolism , Energy Metabolism/physiology , Male , Maze Learning/physiology , Memory Disorders/etiology , Rats , Rats, Inbred F344
18.
Aging Cell ; 6(3): 307-17, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17465978

ABSTRACT

Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.


Subject(s)
Aging , Alzheimer Disease/metabolism , Brain/pathology , Calcium Signaling , Calcium/metabolism , Aged , Animals , Biomarkers/chemistry , Calcium Channels, L-Type/metabolism , Electrophysiology , Humans , Ischemia , Models, Biological , Neurons/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
19.
Brain Res ; 1151: 20-31, 2007 Jun 02.
Article in English | MEDLINE | ID: mdl-17433272

ABSTRACT

Excessive glutamate (Glu) stimulation of the NMDA-R is a widely recognized trigger for Ca(2+)-mediated excitotoxicity. Primary neurons typically show a large increase in vulnerability to excitotoxicity with increasing days in vitro (DIV). This enhanced vulnerability has been associated with increased expression of the NR2B subunit or increased NMDA-R current, but the detailed age-courses of these variables in primary hippocampal neurons have not been compared in the same study. Further, it is not clear whether the NMDA-R is the only source of excess Ca(2+). Here, we used primary hippocampal neurons to examine the age dependence of the increase in excitotoxic vulnerability with changes in NMDA-R current, and subunit expression. We also tested whether L-type voltage-gated Ca(2+) channels (L-VGCCs) contribute to the enhanced vulnerability. The EC(50) for Glu toxicity decreased by approximately 10-fold between 8-9 and 14-15 DIV, changing little thereafter. Parallel experiments found that during the same period both amplitude and duration of NMDA-R current increased dramatically; this was associated with an increase in protein expression of the NR1 and NR2A subunits, but not of the NR2B subunit. Compared to MK-801, ifenprodil, a selective NR2B antagonist, was less effective in protecting older than younger neurons from Glu insult. Conversely, nimodipine, an L-VGCC antagonist, protected older but not younger neurons. Our results indicate that enhanced excitotoxic vulnerability with age in culture was associated with a substantial increase in NMDA-R current, concomitant increases in NR2A and NR1 but not NR2B subunit expression, and with apparent recruitment of L-VGCCs into the excitotoxic process.


Subject(s)
Aging/physiology , Hippocampus/cytology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type , Cell Survival/drug effects , Cells, Cultured , Dizocilpine Maleate/pharmacology , Embryo, Mammalian , Female , Gene Expression/drug effects , Glutamic Acid/toxicity , L-Lactate Dehydrogenase/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , N-Methylaspartate/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Patch-Clamp Techniques/methods , Pregnancy , Rats , Rats, Sprague-Dawley
20.
Curr Alzheimer Res ; 4(2): 205-12, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17430248

ABSTRACT

The original glucocorticoid (GC) hypothesis of brain aging and Alzheimer's disease proposed that chronic exposure to GCs promotes hippocampal aging and AD. This proposition arose from a study correlating increasing plasma corticosterone with hippocampal astrocyte reactivity in aging rats. Numerous subsequent studies have found evidence consistent with this hypothesis, in animal models and in humans. However, several results emerged that were inconsistent with the hypothesis, highlighting the need for a more definitive test with a broader panel of biomarkers. We used microarray analyses to identify a panel of hippocampal gene expression changes that were aging-dependent, and also corticosterone-dependent. These data enabled us to test a key prediction of the GC hypothesis, namely, that the expression of most target biomarkers of brain aging should be regulated in the same direction (increased or decreased) by both GCs and aging. This prediction was decisively contradicted, as a majority of biomarker genes were regulated in opposite directions by aging and GCs, particularly inflammatory and astrocyte-specific genes. Thus, the initial hypothesis of simple positive cooperativity between GCs and aging must be rejected. Instead, our microarray data suggest that in the brain GCs and aging interact in more complex ways that depend on the cell type. Therefore, we propose a new version of the GC-brain aging hypothesis; its main premise is that aging selectively increases GC efficacy in some cell types (e.g., neurons), enhancing catabolic processes, whereas aging selectively decreases GC efficacy in other cell types (e.g., astrocytes), weakening GC anti-inflammatory activity. We also propose that changes in GC efficacy might be mediated in part by cell type specific shifts in the antagonistic balance between GC and insulin actions, which may be of relevance for Alzheimer's disease pathogenesis.


Subject(s)
Aging , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/pathology , Glucocorticoids/physiology , Alzheimer Disease/genetics , Animals , Brain/metabolism , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...