Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 20215, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980454

ABSTRACT

Sonodynamic therapy (SDT) is currently on critical path for glioblastoma therapeutics. SDT is a non-invasive approach utilising focused ultrasound to activate photosensitisers like 5-ALA to impede tumour growth. Unfortunately, the molecular mechanisms underlying the therapeutic functions of SDT remain enigmatic. This is primarily due to the lack of intricately optimised instrumentation capable of modulating SDT delivery to glioma cells in vitro. Consequently, very little information is available on the effects of SDT on glioma stem cells which are key drivers of gliomagenesis and recurrence. To address this, the current study has developed and validated an automated in vitro SDT system to allow the application and mapping of focused ultrasound fields under varied exposure conditions and setup configurations. The study optimizes ultrasound frequency, intensity, plate base material, thermal effect, and the integration of live cells. Indeed, in the presence of 5-ALA, focused ultrasound induces apoptotic cell death in primary patient-derived glioma cells with concurrent upregulation of intracellular reactive oxygen species. Intriguingly, primary glioma stem neurospheres also exhibit remarkably reduced 3D growth upon SDT exposure. Taken together, the study reports an in vitro system for SDT applications on tissue culture-based disease models to potentially benchmark the novel approach to the current standard-of-care.


Subject(s)
Glioblastoma , Glioma , Ultrasonic Therapy , Humans , Glioblastoma/pathology , Aminolevulinic Acid/pharmacology , Glioma/pathology , Apoptosis , Reactive Oxygen Species/metabolism , Cell Line, Tumor
2.
Front Genet ; 14: 1122758, 2023.
Article in English | MEDLINE | ID: mdl-37152995

ABSTRACT

Background: Focused ultrasound (FUS) has become an important non-invasive therapy for prostate tumor ablation via thermal effects in the clinic. The cavitation effect induced by FUS is applied for histotripsy, support drug delivery, and the induction of blood vessel destruction for cancer therapy. Numerous studies report that cavitation-induced sonoporation could provoke multiple anti-proliferative effects on cancer cells. Therefore, cavitation alone or in combination with thermal treatment is of great interest but research in this field is inadequate. Methods: Human prostate cancer cells (LNCap and PC-3) were exposed to 40 s cavitation using a FUS system, followed by water bath hyperthermia (HT). The clonogenic assay, WST-1 assay, and Transwell® invasion assay, respectively, were used to assess cancer cell clonogenic survival, metabolic activity, and invasion potential. Fluorescence microscopy using propidium iodide (PI) as a probe of cell membrane integrity was used to identify sonoporation. The H2A.X assay and Nicoletti test were conducted in the mechanism investigation to detect DNA double-strand breaks (DSBs) and cell cycle arrest. Immunofluorescence microscopy and flow cytometry were performed to determine the distribution and expression of 5α-reductase (SRD5A). Results: Short FUS shots with cavitation (FUS-Cav) in combination with HT resulted in, respectively, a 2.2, 2.3, and 2.8-fold decrease (LNCap) and a 2.0, 1.5, and 1.6-fold decrease (PC-3) in the clonogenic survival, cell invasiveness and metabolic activity of prostate cancer cells when compared to HT alone. FUS-Cav immediately induced sonoporation in 61.7% of LNCap cells, and the combination treatment led to a 1.4 (LNCap) and 1.6-fold (PC-3) increase in the number of DSBs compared to HT alone. Meanwhile, the combination therapy resulted in 26.68% of LNCap and 31.70% of PC-3 with cell cycle arrest in the Sub-G1 phase and 35.37% of PC-3 with cell cycle arrest in the G2/M phase. Additionally, the treatment of FUS-Cav combined with HT block the androgen receptor (AR) signal pathway by reducing the relative Type I 5α-reductase (SRD5A1) level to 38.28 ± 3.76% in LNCap cells, and decreasing the relative Type III 5α-reductase 3 (SRD5A3) level to 22.87 ± 4.88% in PC-3 cells, in contrast, the relative SRD5A level in untreated groups was set to 100%. Conclusion: FUS-induced cavitation increases the effects of HT by interrupting cancer cell membranes, inducing the DSBs and cell cycle arrest, and blocking the AR signal pathway of the prostate cancer cells, with the potential to be a promising adjuvant therapy in prostate cancer treatment.

3.
Cells ; 12(3)2023 02 02.
Article in English | MEDLINE | ID: mdl-36766824

ABSTRACT

Focused ultrasound (FUS) can be used to physiologically change or destroy tissue in a non-invasive way. A few commercial systems have clinical approval for the thermal ablation of solid tumors for the treatment of neurological diseases and palliative pain management of bone metastases. However, the thermal effects of FUS are known to lead to various biological effects, such as inhibition of repair of DNA damage, reduction in tumor hypoxia, and induction of apoptosis. Here, we studied radiosensitization as a combination therapy of FUS and RT in a xenograft mouse model using newly developed MRI-compatible FUS equipment. Xenograft tumor-bearing mice were produced by subcutaneous injection of the human prostate cancer cell line PC-3. Animals were treated with FUS in 7 T MRI at 4.8 W/cm2 to reach ~45 °C and held for 30 min. The temperature was controlled via fiber optics and proton resonance frequency shift (PRF) MR thermometry in parallel. In the combination group, animals were treated with FUS followed by X-ray at a single dose of 10 Gy. The effects of FUS and RT were assessed via hematoxylin-eosin (H&E) staining. Tumor proliferation was detected by the immunohistochemistry of Ki67 and apoptosis was measured by a TUNEL assay. At 40 days follow-up, the impact of RT on cancer cells was significantly improved by FUS as demonstrated by a reduction in cell nucleoli from 189 to 237 compared to RT alone. Inhibition of tumor growth by 4.6 times was observed in vivo in the FUS + RT group (85.3%) in contrast to the tumor volume of 393% in the untreated control. Our results demonstrated the feasibility of combined MRI-guided FUS and RT for the treatment of prostate cancer in a xenograft mouse model and may provide a chance for less invasive cancer therapy through radiosensitization.


Subject(s)
Hyperthermia, Induced , Prostatic Neoplasms , Male , Humans , Mice , Animals , Heterografts , Hyperthermia, Induced/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Magnetic Resonance Imaging/methods , Temperature
4.
Cells ; 11(9)2022 04 30.
Article in English | MEDLINE | ID: mdl-35563823

ABSTRACT

Focused ultrasound (FUS) is a non-invasive technique producing a variety of biological effects by either thermal or mechanical mechanisms of ultrasound interaction with the targeted tissue. FUS could bring benefits, e.g., tumour sensitisation, immune stimulation, and targeted drug delivery, but investigation of FUS effects at the cellular level is still missing. New techniques are commonly tested in vitro on two-dimensional (2D) monolayer cancer cell culture models. The 3D tumour model-spheroid-is mainly utilised to mimic solid tumours from an architectural standpoint. It is a promising method to simulate the characteristics of tumours in vitro and their various responses to therapeutic alternatives. This study aimed to evaluate the effects of FUS on human prostate and glioblastoma cancer tumour spheroids in vitro. The experimental follow-up enclosed the measurements of spheroid integrity and growth kinetics, DNA damage, and cellular metabolic activity by measuring intracellular ATP content in the spheroids. Our results showed that pulsed FUS treatment induced molecular effects in 3D tumour models. With the disruption of the spheroid integrity, we observed an increase in DNA double-strand breaks, leading to damage in the cancer cells depending on the cancer cell type.


Subject(s)
Glioblastoma , Spheroids, Cellular , DNA Damage , Drug Delivery Systems , Humans , Male
5.
IEEE Trans Biomed Eng ; 69(2): 758-770, 2022 02.
Article in English | MEDLINE | ID: mdl-34398748

ABSTRACT

OBJECTIVE: The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS: For 3D-beam steering capabilities, a matrix array approach with 11 × 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS: Four 11 × 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4 °C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION: We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to ±30°. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE: The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.


Subject(s)
Hyperthermia, Induced , Animals , Hyperthermia, Induced/methods , Magnetic Resonance Imaging/veterinary , Phantoms, Imaging , Ultrasonography/veterinary
6.
J Nucl Med ; 62(9): 1181-1188, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34088775

ABSTRACT

Image-guided high-intensity focused ultrasound (HIFU) has been increasingly used in medicine over the past few decades, and several systems for such have become commercially available. HIFU has passed regulatory approval around the world for the ablation of various solid tumors, the treatment of neurologic diseases, and the palliative management of bone metastases. The mechanical and thermal effects of focused ultrasound provide a possibility for histotripsy, supportive radiation therapy, and targeted drug delivery. The integration of imaging modalities into HIFU systems allows for precise temperature monitoring and accurate treatment planning, increasing the safety and efficiency of treatment. Preclinical and clinical results have demonstrated the potential of image-guided HIFU to reduce adverse effects and increase the quality of life postoperatively. Interventional nuclear image-guided HIFU is an attractive noninvasive option for the future.


Subject(s)
Nuclear Medicine , Drug Delivery Systems , High-Intensity Focused Ultrasound Ablation , Quality of Life
7.
Strahlenther Onkol ; 197(8): 730-743, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33885910

ABSTRACT

PURPOSE: High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40-47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. METHODS: An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X­ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST­1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). RESULTS: The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. CONCLUSION: Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage.


Subject(s)
Glioblastoma/therapy , Head and Neck Neoplasms/therapy , Prostatic Neoplasms/therapy , Cell Line, Tumor , Combined Modality Therapy , DNA Damage/radiation effects , Glioblastoma/genetics , Glioblastoma/radiotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Humans , Hyperthermia, Induced , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Ultrasonography , X-Ray Therapy
8.
Q J Nucl Med Mol Imaging ; 65(1): 43-50, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33300750

ABSTRACT

Multimodality imaging has emerged from a vision thirty years ago to routine clinical use today. Positron emission tomography (PET)/magnetic resonance imaging (MRI) is still relatively new in this arena and particularly suitable for clinical research and technical development. PET/MRI-guidance for interventions opens up opportunities for novel treatments but at the same time demands certain technical and organizational requirements to be fulfilled. In this work, we aimed to demonstrate a practical setting and potential application of PET/MRI guidance of interventional procedures. The superior quantitative physiologic information of PET, the various unique imaging characteristics of MRI, and the reduced radiation exposure are the most relevant advantages of this technique. As a noninvasive interventional tool, focused ultrasound (FUS) ablation of tumor cells would benefit from PET/MRI for diagnostics, treatment planning and intervention. Yet, technical limitations might impeed preclinical research, given that PET/MRI sites are per se not designed as interventional suites. Nonetheless, several approaches have been offered in the past years to upgrade MRI suites for interventional purposes. Taking advantage of state of the art and easy-to-use technology it is possible to create a supporting infrastructure that is suitable for broad preclinical adaption. Several aspects are to be addressed, including remote control of the imaging system, display of the imaging results, communication technology, and implementation of additional devices such as a FUS platform and an MR-compatible robotic system for positioning of the FUS equipment. Feasibility could be demostrated with an examplary experimental setup for interventional PET/MRI. Most PET/MRI sites could allow for interventions with just a few add-ons and modifications, such as comunication, in room image display and sytems control. By unlocking this feature, and driving preclinical research in interventional PET/MRI, translation of the protocol and methodology into clinical settings seems feasible.


Subject(s)
Magnetic Resonance Imaging, Interventional/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Positron-Emission Tomography/methods , Equipment Design , Humans , Image Enhancement , Image Processing, Computer-Assisted , Multimodal Imaging
9.
Cells ; 9(12)2020 12 03.
Article in English | MEDLINE | ID: mdl-33287379

ABSTRACT

Focused ultrasound (FUS) has become an important non-invasive therapy for solid tumor ablation via thermal effects. The cavitation effect induced by FUS is thereby avoided but applied for lithotripsy, support drug delivery and the induction of blood vessel destruction for cancer therapy. In this study, head and neck cancer (FaDu), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS by using an in vitro FUS system followed by single-dose X-ray radiation therapy (RT) or water bath hyperthermia (HT). Sensitization effects of short FUS shots with cavitation (FUS-Cav) or without cavitation (FUS) to RT or HT (45 °C, 30 min) were evaluated. FUS-Cav significantly increases the sensitivity of cancer cells to RT and HT by reducing long-term clonogenic survival, short-term cell metabolic activity, cell invasion, and induction of sonoporation. Our results demonstrated that short FUS treatment with cavitation has good potential to sensitize cancer cells to RT and HT non-invasively.


Subject(s)
Neoplasms/radiotherapy , Neoplasms/therapy , Cell Line, Tumor , Drug Delivery Systems/methods , Humans , Hyperthermia, Induced/methods , PC-3 Cells , Radiotherapy/methods , Ultrasonography/methods
10.
Sci Rep ; 7(1): 4341, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659574

ABSTRACT

All over the world, different types of nanomaterials with a diversified spectrum of applications are designed and developed, especially in the field of nanomedicine. The great variety of nanoparticles (NPs), in vitro test systems and cell lines led to a vast amount of publications with conflicting data. To identify the decisive principles of these variabilities, we conducted an intercomparison study of collaborating laboratories within the German DFG Priority Program SPP1313, using well-defined experimental parameters and well-characterized NPs. The participants analyzed the in vitro biocompatibility of silica and polymer NPs on human hepatoma HepG2 cells. Nanoparticle mediated effects on cell metabolism, internalization, and inflammation were measured. All laboratories showed that both nanoparticle formulations were internalized and had a low cytotoxicity profile. Interestingly, small variations in nanoparticle preparation, cell handling and the type of culture slide influenced the nanoparticle stability and the outcomes of cell assays. The round robin test demonstrated the importance of the use of clearly defined and characterized NPs and parameters for reproducible results across laboratories. Comparative analyses of in vitro screening methods performed in multiple laboratories are absolutely essential to establish robust standard operation procedure as a prerequisite for sound hazard assessment of nanomaterials.


Subject(s)
Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Theranostic Nanomedicine , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Chemical Phenomena , Hep G2 Cells , Humans , Polymers/chemical synthesis
11.
Biomaterials ; 68: 77-88, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26276693

ABSTRACT

Au@Fe3O4 Janus particles (JPs) are heteroparticles with discrete domains defined by different materials. Their tunable composition and morphology confer multimodal and versatile capabilities for use as contrast agents and drug carriers in future medicine. Au@Fe3O4 JPs have colloidal properties and surface characteristics leading to interactions with proteins in biological fluids. The resulting protein adsorption layer ("protein corona") critically affects their interaction with living matter. Although Au@Fe3O4 JPs displayed good biocompatibility in a standardized in vitro situation, an in-depth characterization of the protein corona is of prime importance to unravel underlying mechanisms affecting their pathophysiology and biodistribution in vitro and in vivo. Here, we comparatively analyzed the human plasma corona of Au-thiol@Fe3O4-SiO2-PEG JPs (NH2-functionalized and non-functionalized) and spherical magnetite (Fe3O4-SiO2-PEG) particles and investigated its effects on colloidal stability, biocompatibility and cellular uptake. Label-free quantitative proteomic analyses revealed that complex coronas including almost 180 different proteins were formed within only one minute. Remarkably, in contrast to spherical magnetite particles with surface NH2 groups, the Janus structure prevented aggregation and the adhesion of opsonins. This resulted in an enhanced biocompatibility of corona sheathed JPs compared to spherical magnetite particles and corona-free JPs.


Subject(s)
Blood Proteins/chemistry , Coated Materials, Biocompatible/chemical synthesis , Endothelial Cells/chemistry , Gold/chemistry , Magnetite Nanoparticles/chemistry , Multimodal Imaging/methods , Adsorption , Animals , Contrast Media/chemical synthesis , Humans , Magnetic Resonance Imaging/methods , Mice , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Particle Size , Surface Properties , Tissue Distribution , Tomography, X-Ray Computed/methods
12.
Beilstein J Nanotechnol ; 6: 300-12, 2015.
Article in English | MEDLINE | ID: mdl-25821668

ABSTRACT

In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in comparison to spherical ones. Furthermore, a positively charged nanoparticle surface (NH2, CyA) leads to the strongest reduction in cell viability, whereas neutral and negatively charged nanoparticles are highly biocompatible to endothelial cells. These findings are attributed to a rapid internalization of the NH2-functionalized nanoparticles in combination with the damage of intracellular membranes. Interestingly, the endocytotic pathway seems to be a size-dependent process whereas nanoparticles with a size of 20 nm are internalized by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application.

13.
Biomaterials ; 35(25): 6986-97, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24856108

ABSTRACT

The physical properties of asymmetric Janus particles are highly promising for future biomedical applications. However, only a few data is available on their biological impact on human cells. We investigated the biological impact of different Au@Fe3O4 Janus particle formulations in vitro to analyse specific uptake modalities and their potential cytotoxic effects on human cells of the blood regarding intravenous injection. We demonstrate that Au@Fe3O4 Janus particles exhibit a similar or even better biocompatibility compared to the well-studied spherical iron oxide nanoparticles. The impact of Janus particles on cells depends mainly on three factors. (1) Surface functionalization: NH2-functionalization of the Au or iron oxide domain induces a pronounced reduction of cell viability in contrast to non-functionalized variants which is caused by the damage of intracellular membranes. (2) The nature of the metal oxide component, greatly affects cell viability, as shown by a comparison with Au@MnO Janus particles. (3) The overall surface charge and the size of nanoparticles have a higher impact on internalization and cellular metabolism than the Janus character per se. Interestingly, Janus particle associated DNA damage is independent of the effects on the cellular ATP level. However, not only the structure and functionalization of the Janus particle surface determines the particle's adhesion and intracellular fate, but also the constitution of the cell surface as shown by different modification experiments. The multifactorial in vitro approach presented in this study demonstrated the high capability of the Janus particles. Especially Au@Fe3O4 Janus particles bear great potential for applications in vivo.


Subject(s)
Antioxidants/pharmacology , Blood Cells/drug effects , Ferric Compounds/pharmacology , Antioxidants/chemistry , Blood Cells/metabolism , Cell Line , Cell Survival , Chemical Phenomena , DNA Damage/drug effects , Endothelial Cells/drug effects , Ferric Compounds/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Particle Size , Reactive Oxygen Species/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...