Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(12): 6639-6655, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736222

ABSTRACT

Riboswitches are gene regulatory elements located in untranslated mRNA regions. They bind inducer molecules with high affinity and specificity. Cyclic-di-nucleotide-sensing riboswitches are major regulators of genes for the environment, membranes and motility (GEMM) of bacteria. Up to now, structural probing assays or crystal structures have provided insight into the interaction between cyclic-di-nucleotides and their corresponding riboswitches. ITC analysis, NMR analysis and computational modeling allowed us to gain a detailed understanding of the gene regulation mechanisms for the Cd1 (Clostridium difficile) and for the pilM (Geobacter metallireducens) riboswitches and their respective di-nucleotides c-di-GMP and c-GAMP. Binding capability showed a 25 nucleotide (nt) long window for pilM and a 61 nt window for Cd1. Within this window, binding affinities ranged from 35 µM to 0.25 µM spanning two orders of magnitude for Cd1 and pilM showing a strong dependence on competing riboswitch folds. Experimental results were incorporated into a Markov simulation to further our understanding of the transcriptional folding pathways of riboswitches. Our model showed the ability to predict riboswitch gene regulation and its dependence on transcription speed, pausing and ligand concentration.


Subject(s)
Nucleotides, Cyclic , Riboswitch
2.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Article in English | MEDLINE | ID: mdl-34453696

ABSTRACT

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Nucleic Acid Conformation , RNA, Spliced Leader
4.
Chembiochem ; 22(2): 423-433, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32794266

ABSTRACT

We report here the nuclear magnetic resonance 19 F screening of 14 RNA targets with different secondary and tertiary structure to systematically assess the druggability of RNAs. Our RNA targets include representative bacterial riboswitches that naturally bind with nanomolar affinity and high specificity to cellular metabolites of low molecular weight. Based on counter-screens against five DNAs and five proteins, we can show that RNA can be specifically targeted. To demonstrate the quality of the initial fragment library that has been designed for easy follow-up chemistry, we further show how to increase binding affinity from an initial fragment hit by chemistry that links the identified fragment to the intercalator acridine. Thus, we achieve low-micromolar binding affinity without losing binding specificity between two different terminator structures.


Subject(s)
DNA/metabolism , Nuclear Magnetic Resonance, Biomolecular , Proteins/metabolism , RNA/metabolism , DNA/chemistry , Fluorine/chemistry , Molecular Weight , Proteins/chemistry , RNA/chemistry
5.
Nucleic Acids Res ; 48(22): 12415-12435, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33167030

ABSTRACT

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.


Subject(s)
COVID-19/prevention & control , Magnetic Resonance Spectroscopy/methods , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/genetics , 3' Untranslated Regions/genetics , Base Sequence , COVID-19/epidemiology , COVID-19/virology , Frameshifting, Ribosomal/genetics , Genome, Viral/genetics , Humans , Models, Molecular , Pandemics , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...