Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(12): 120504, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016760

ABSTRACT

Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary swap-like (iSWAP-like) gate to attain an arbitrary swap angle, θ, and a controlled-phase gate that generates an arbitrary conditional phase, ϕ. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase gate families as well as 525 other fSim gates spread evenly across the entire fSim(θ,ϕ) parameter space, achieving a purity-limited average two-qubit Pauli error of 3.8×10^{-3} per fSim gate.

2.
Phys Rev Lett ; 123(21): 210501, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809160

ABSTRACT

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iswap-like and cphase gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...