Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1198: 339548, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35190133

ABSTRACT

Bulk and magnetic core-shell Molecularly Imprinted Polymers (MMIPs) have been introduced and compared to extract and determine amiodarone from a complex matrix, i.e., plasma, due to the importance of Therapeutic Drug Monitoring (TDM). Polymer synthesis was confirmed by FTIR, AFM, TGA, DLS, VSM, TEM, and the adsorption studies such as capacity, isothermal models, selectivity, and regeneration were performed to evaluate and compare polymer efficiency in extraction and separation of amiodarone from sample solutions and human plasma. Both nano-sized and bulk polymers successfully extracted the target molecule at the low therapeutic ranges and the overdose concentrations (recoveries of 98.38%-102.70%). The maximum adsorption capacity of the MMIPs was 42.5 µg/mg compared with 2.6 µg/mg for bulk polymers. The imprinting factors of the polymers were 15.12 and 6.84 for MMIPs and bulk, respectively. MMIPs and bulk polymers presented 4.68 and 1.66 selectivity factors, respectively, towards amiodarone compared with lidocaine. LOD, LOQ, and enrichment factor in human plasma were 0.09, 0.28 µg mL-1, and 10 respectively. Recoveries of therapeutic concentration from plasma were 91.38 and 97.33% for bulk and MMIPs, respectively. MMIPs as an adsorbent in amiodarone extraction from plasma offered reduced necessary sample amount, less adsorbent consumption, reduced pretreatment time, and reduced elution solvent waste while yielding higher extraction recovery and more specificity for the target compared with the bulk polymer. Bulk polymers have a more straightforward synthesis procedure due to fewer synthesis steps and fewer variables, and Molecularly Imprinted Polymer Solid-phase Extraction (MIP-SPE) has already been introduced commercially. MMIPs prevail on a small scale, and in the context of a simple extraction, separation, or concentration in large-scale bioanalysis, efforts towards optimization and development of MMIPs can unearth tremendous opportunities for green chemistry principles.


Subject(s)
Amiodarone , Molecular Imprinting , Adsorption , Humans , Magnetic Phenomena , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Solid Phase Extraction/methods
2.
Iran J Pharm Res ; 18(Suppl1): 221-236, 2019.
Article in English | MEDLINE | ID: mdl-32802102

ABSTRACT

Our goal is to reduce the release rate of methotrexate (MTX) and increase cell death efficiency.Carboxylated multi-walled carbon nanotubes (MWCNT-COOH) were functionalized with MTX as a cytotoxic agent, FA as a targeting moiety and polyethylene amine (PEI) as a hydrophilic agent. Ultimately, MWCNT-MTX and MWCNT-MTX-PEI-FA were synthesized. Methotrexate release studies were conducted in PBS and cytotoxic studies were carried out by means of the MTT tassay. Methotrexate release studies from these two carriers demonstrated that the attachment of PEI-FA onto MWCNT-MTX reduces the release rate of methotrexate. The IC50 of MWCNT-MTX-PEI-FA and MWCNT-MTX have been calculated as follows: 9.89 ± 0.38 and 16.98 ± 1.07 µg/mL, respectively. Cytotoxic studies on MWCNT-MTX-PEI-FA and MWCNT-MTX in the presence of an IR laser showed that at high concentrations, they had similar toxicities due to the MWCNT's photothermal effect. Targeting effect studies in the presence of the IR laser on the cancer cells have shown that MWCNT-MTX-PEI-FA, MWCNT-MTX, and f-MWCNT have triggered the death of cancer cells by 55.11 ± 1.97%, 49.64 ± 2.44%, and 37 ± 0.70%, respectively. The release profile of MTX in MWCNT-MTX-PEI-FA showed that the presence of PEI acts as a barrier against release and reduces the MTX release rate. In the absence of a laser, MWCNT-MTX-PEI-FA exhibits the highest degree of cytotoxicity. In the presence of a laser, the cytotoxicity of MWCNT-MTX and MWCNT-MTX-PEI-FA has no significant difference. Targeting studies have shown that MWCNT-MTX-PEI-FA can be absorbed by cancer cells exclusively.

SELECTION OF CITATIONS
SEARCH DETAIL
...