Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(6): 3602-12, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24280219

ABSTRACT

O-GlcNAc is a carbohydrate modification found on cytosolic and nuclear proteins. Our previous findings implicated O-GlcNAc in hippocampal presynaptic plasticity. An important mechanism in presynaptic plasticity is the establishment of the reserve pool of synaptic vesicles (RPSV). Dynamic association of synapsin I with synaptic vesicles (SVs) regulates the size and release of RPSV. Disruption of synapsin I function results in reduced size of the RPSV, increased synaptic depression, memory deficits, and epilepsy. Here, we investigate whether O-GlcNAc directly regulates synapsin I function in presynaptic plasticity. We found that synapsin I is modified by O-GlcNAc during hippocampal synaptogenesis in the rat. We identified three novel O-GlcNAc sites on synapsin I, two of which are known Ca(2+)/calmodulin-dependent protein kinase II phosphorylation sites. All O-GlcNAc sites mapped within the regulatory regions on synapsin I. Expression of synapsin I where a single O-GlcNAc site Thr-87 was mutated to alanine in primary hippocampal neurons dramatically increased localization of synapsin I to synapses, increased density of SV clusters along axons, and the size of the RPSV, suggesting that O-GlcNAcylation of synapsin I at Thr-87 may be a mechanism to modulate presynaptic plasticity. Thr-87 is located within an amphipathic lipid-packing sensor (ALPS) motif, which participates in targeting of synapsin I to synapses by contributing to the binding of synapsin I to SVs. We discuss the possibility that O-GlcNAcylation of Thr-87 interferes with folding of the ALPS motif, providing a means for regulating the association of synapsin I with SVs as a mechanism contributing to synapsin I localization and RPSV generation.


Subject(s)
Acetylglucosamine/metabolism , Hippocampus/metabolism , Protein Folding , Synapsins/metabolism , Synaptic Vesicles/metabolism , Acetylglucosamine/genetics , Amino Acid Motifs , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Glycosylation , Humans , Mice , Protein Transport/physiology , Rats , Synapsins/genetics , Synaptic Vesicles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...