Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Res Microbiol ; 174(7): 104113, 2023.
Article in English | MEDLINE | ID: mdl-37572824

ABSTRACT

The Corynebacterium diphtheriae species complex comprises seven bacterial species, including Corynebacterium ulcerans, a zoonotic pathogen from multiple animal species. In this work, we characterise phenotypically and genotypically isolates belonging to two C. ulcerans lineages. Results from phylogenetic analyses, in silico DNA-DNA hybridization (DDH) and MALDI-TOF spectra differentiate lineage 2 from C. ulcerans lineage 1, which, together with their distinct transmission dynamics (probable human-to-human vs animal-to-human), indicates that lineage 2 is a separate Corynebacterium species, which we propose to name Corynebacterium ramonii. This species is of particular medical interest considering that its human-to-human transmission is likely, and that some C. ramonii isolates carry the diphtheria toxin gene.

2.
Microbes Infect ; 25(7): 105152, 2023.
Article in English | MEDLINE | ID: mdl-37245862

ABSTRACT

INTRODUCTION: Bordetella pertussis still circulates worldwide despite vaccination. Fimbriae are components of some acellular pertussis vaccines. Population fluctuations of B. pertussis fimbrial serotypes (FIM2 and FIM3) are observed, and fim3 alleles (fim3-1 [clade 1] and fim3-2 [clade 2]) mark a major phylogenetic subdivision of B. pertussis. OBJECTIVES: To compare microbiological characteristics and expressed protein profiles between fimbrial serotypes FIM2 and FIM3 and genomic clades. METHODS: A total of 19 isolates were selected. Absolute protein abundance of the main virulence factors, autoagglutination and biofilm formation, bacterial survival in whole blood, induced blood cell cytokine secretion, and global proteome profiles were assessed. RESULTS: Compared to FIM3, FIM2 isolates produced more fimbriae, less cellular pertussis toxin subunit 1 and more biofilm, but auto-agglutinated less. FIM2 isolates had a lower survival rate in cord blood, but induced higher levels of IL-4, IL-8 and IL-1ß secretion. Global proteome comparisons uncovered 15 differentially produced proteins between FIM2 and FIM3 isolates, involved in adhesion and metabolism of metals. FIM3 isolates of clade 2 produced more FIM3 and more biofilm compared to clade 1. CONCLUSION: FIM serotype and fim3 clades are associated with proteomic and other biological differences, which may have implications on pathogenesis and epidemiological emergence.


Subject(s)
Bordetella pertussis , Whooping Cough , Humans , Serogroup , Fimbriae Proteins/genetics , Phylogeny , Proteome/genetics , Proteomics , Virulence Factors, Bordetella/genetics , Pertussis Vaccine , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism
3.
Nat Commun ; 13(1): 3807, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778384

ABSTRACT

The genus Bordetella includes bacteria that are found in the environment and/or associated with humans and other animals. A few closely related species, including Bordetella pertussis, are human pathogens that cause diseases such as whooping cough. Here, we present a large database of Bordetella isolates and genomes and develop genotyping systems for the genus and for the B. pertussis clade. To generate the database, we merge previously existing databases from Oxford University and Institut Pasteur, import genomes from public repositories, and add 83 newly sequenced B. bronchiseptica genomes. The public database currently includes 2582 Bordetella isolates and their provenance data, and 2085 genomes ( https://bigsdb.pasteur.fr/bordetella/ ). We use core-genome multilocus sequence typing (cgMLST) to develop genotyping systems for the whole genus and for B. pertussis, as well as specific schemes to define antigenic, virulence and macrolide resistance profiles. Phylogenetic analyses allow us to redefine evolutionary relationships among known Bordetella species, and to propose potential new species. Our database provides an expandable resource for genotyping of environmental and clinical Bordetella isolates, thus facilitating evolutionary and epidemiological research on whooping cough and other Bordetella infections.


Subject(s)
Whooping Cough , Animals , Anti-Bacterial Agents , Biodiversity , Bordetella pertussis/genetics , Drug Resistance, Bacterial , Genomics , Humans , Macrolides , Phylogeny , Whooping Cough/epidemiology
4.
Sci Transl Med ; 14(642): eabn3253, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35476597

ABSTRACT

As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.


Subject(s)
Bordetella pertussis , Whooping Cough , Bordetella pertussis/genetics , Europe , Genotype , Humans , Pertussis Vaccine , Whooping Cough/epidemiology , Whooping Cough/prevention & control
5.
Euro Surveill ; 26(37)2021 09.
Article in English | MEDLINE | ID: mdl-34533118

ABSTRACT

BackgroundBordetella pertussis is the main agent of whooping cough. Vaccination with acellular pertussis vaccines has been largely implemented in high-income countries. These vaccines contain 1 to 5 antigens: pertussis toxin (PT), filamentous haemagglutinin (FHA), pertactin (PRN) and/or fimbrial proteins (FIM2 and FIM3). Monitoring the emergence of B. pertussis isolates that might partially escape vaccine-induced immunity is an essential component of public health strategies to control whooping cough.AimWe aimed to investigate temporal trends of fimbriae serotypes and vaccine antigen-expression in B. pertussis over a 23-year period in France (1996-2018).MethodsIsolates (n = 2,280) were collected through hospital surveillance, capturing one third of hospitalised paediatric pertussis cases. We assayed PT, FHA and PRN production by Western blot (n = 1,428) and fimbriae production by serotyping (n = 1,058). Molecular events underlying antigen deficiency were investigated by genomic sequencing.ResultsThe proportion of PRN-deficient B. pertussis isolates has increased steadily from 0% (0/38) in 2003 to 48.4% (31/64) in 2018 (chi-squared test for trend, p < 0.0001), whereas only 5 PT-, 5 FHA- and 9 FIM-deficient isolates were found. Impairment of PRN production was predominantly due to IS481 insertion within the prn gene or a 22 kb genomic inversion involving the prn promoter sequence, indicative of convergent evolution. FIM2-expressing isolates have emerged since 2011 at the expense of FIM3.ConclusionsB. pertussis is evolving through the rapid increase of PRN-deficient isolates and a recent shift from FIM3 to FIM2 expression. Excluding PRN, the loss of vaccine antigen expression by circulating B. pertussis isolates is epidemiologically insignificant.


Subject(s)
Bordetella pertussis , Whooping Cough , Bacterial Outer Membrane Proteins/genetics , Bordetella pertussis/genetics , Child , France/epidemiology , Humans , Pertussis Toxin , Pertussis Vaccine , Virulence Factors, Bordetella/genetics , Whooping Cough/epidemiology , Whooping Cough/prevention & control
6.
Open Forum Infect Dis ; 6(4): ofz122, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30976607

ABSTRACT

Whooping cough's primary etiological agent is Bordetella pertussis. The closely related Bordetella parapertussis rarely causes severe disease. Here we report an unusual case of bacteremia caused by B. parapertussis, review the literature, and characterize the genomic sequence of the bacterial isolate in comparison with B. parapertussis isolates from respiratory infections.

7.
Emerg Infect Dis ; 24(6): 988-994, 2018 06.
Article in English | MEDLINE | ID: mdl-29774847

ABSTRACT

Bordetella pertussis causes whooping cough, a highly contagious respiratory disease that is reemerging in many world regions. The spread of antigen-deficient strains may threaten acellular vaccine efficacy. Dynamics of strain transmission are poorly defined because of shortcomings in current strain genotyping methods. Our objective was to develop a whole-genome genotyping strategy with sufficient resolution for local epidemiologic questions and sufficient reproducibility to enable international comparisons of clinical isolates. We defined a core genome multilocus sequence typing scheme comprising 2,038 loci and demonstrated its congruence with whole-genome single-nucleotide polymorphism variation. Most cases of intrafamilial groups of isolates or of multiple isolates recovered from the same patient were distinguished from temporally and geographically cocirculating isolates. However, epidemiologically unrelated isolates were sometimes nearly undistinguishable. We set up a publicly accessible core genome multilocus sequence typing database to enable global comparisons of B. pertussis isolates, opening the way for internationally coordinated surveillance.


Subject(s)
Bordetella pertussis/classification , Bordetella pertussis/genetics , Genome, Bacterial , Genomics , Whooping Cough/epidemiology , Whooping Cough/microbiology , Alleles , Bordetella pertussis/isolation & purification , Disease Outbreaks , Genomics/methods , Global Health , Humans , Minisatellite Repeats , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide , Population Surveillance , Whole Genome Sequencing
8.
J Biol Chem ; 293(2): 497-509, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29146596

ABSTRACT

Peroxide sensing is essential for bacterial survival during aerobic metabolism and host infection. Peroxide stress regulators (PerRs) are homodimeric transcriptional repressors with each monomer typically containing both structural and regulatory metal-binding sites. PerR binding to gene promoters is controlled by the presence of iron in the regulatory site, and iron-catalyzed oxidation of PerR by H2O2 leads to the dissociation of PerR from DNA. In addition to a regulatory metal, most PerRs require a structural metal for proper dimeric assembly. We present here a structural and functional characterization of the PerR from the pathogenic spirochete Leptospira interrogans, a rare example of PerR lacking a structural metal-binding site. In vivo studies showed that the leptospiral PerR belongs to the peroxide stimulon in pathogenic species and is involved in controlling resistance to peroxide. Moreover, a perR mutant had decreased fitness in other host-related stress conditions, including at 37 °C or in the presence of superoxide anion. In vitro, leptospiral PerR could bind to the perR promoter region in a metal-dependent manner. The crystal structure of the leptospiral PerR revealed an asymmetric homodimer, with one monomer displaying complete regulatory metal coordination in the characteristic caliper-like DNA-binding conformation and the second monomer exhibiting disrupted regulatory metal coordination in an open non-DNA-binding conformation. This structure showed that leptospiral PerR assembles into a dimer in which a metal-induced conformational switch can occur independently in the two monomers. Our study demonstrates that structural metal binding is not compulsory for PerR dimeric assembly and for regulating peroxide stress.


Subject(s)
Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Leptospira interrogans/metabolism , Bacterial Proteins/genetics , Binding Sites , Leptospira interrogans/genetics , Mitosis/genetics , Mitosis/physiology , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology
9.
PLoS Negl Trop Dis ; 7(3): e2114, 2013.
Article in English | MEDLINE | ID: mdl-23516654

ABSTRACT

BACKGROUND: Leptospirosis is one of the most important neglected tropical bacterial diseases in Latin America and the Caribbean. However, very little is known about the circulating etiological agents of leptospirosis in this region. In this study, we describe the serological and molecular features of leptospires isolated from 104 leptospirosis patients in Guadeloupe (n = 85) and Martinique (n = 19) and six rats captured in Guadeloupe, between 2004 and 2012. METHODS AND FINDINGS: Strains were studied by serogrouping, PFGE, MLVA, and sequencing 16SrRNA and secY. DNA extracts from blood samples collected from 36 patients in Martinique were also used for molecular typing of leptospires via PCR. Phylogenetic analyses revealed thirteen different genotypes clustered into five main clades that corresponded to the species: L. interrogans, L. kirschneri, L. borgpetersenii, L. noguchi, and L. santarosai. We also identified L. kmetyi in at least two patients with acute leptospirosis. This is the first time, to our knowledge, that this species has been identified in humans. The most prevalent genotypes were associated with L. interrogans serovars Icterohaemorrhagiae and Copenhageni, L. kirschneri serovar Bogvere, and L. borgpetersenii serovar Arborea. We were unable to identify nine strains at the serovar level and comparison of genotyping results to the MLST database revealed new secY alleles. CONCLUSIONS: The overall serovar distribution in the French West Indies was unique compared to the neighboring islands. Typing of leptospiral isolates also suggested the existence of previously undescribed serovars.


Subject(s)
Leptospira interrogans/classification , Leptospirosis/epidemiology , Leptospirosis/microbiology , Leptospirosis/veterinary , Animals , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genotype , Guadeloupe/epidemiology , Humans , Leptospira interrogans/genetics , Leptospira interrogans/immunology , Leptospira interrogans/isolation & purification , Martinique/epidemiology , Molecular Sequence Data , Molecular Typing , Phylogeny , Polymerase Chain Reaction , Rats , Sequence Analysis, DNA , Serotyping
11.
Infect Immun ; 72(11): 6313-7, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15501759

ABSTRACT

Protective antigen (PA) is central to the action of the lethal and edema toxins produced by Bacillus anthracis. It is the common cell-binding component, mediating the translocation of the enzymatic moieties (lethal factor [LF] and edema factor) into the cytoplasm of the host cell. Monoclonal antibodies (MAbs) against PA, able to neutralize the activities of the toxins in vitro and in vivo, were screened. Two such MAbs, named 7.5 and 48.3, were purified and further characterized. MAb 7.5 binds to domain 4 of PA and prevents the binding of PA to its cell receptor. MAb 48.3 binds to domain 2 and blocks the cleavage of PA into PA63, a step necessary for the subsequent interaction with the enzymatic moieties. The epitope recognized by this antibody is in a region involved in the oligomerization of PA63; thus, MAb 48.3 does not recognize the oligomer form. MAbs 7.5 and 48.3 neutralize the activities of anthrax toxins produced by B. anthracis in mice. Also, there is an additive effect between the two MAbs against PA and a MAb against LF, in protecting mice against a lethal challenge by the Sterne strain. This work contributes to the functional analysis of PA and offers immunotherapeutic perspectives for the treatment of anthrax disease.


Subject(s)
Anthrax/prevention & control , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigens, Bacterial/toxicity , Bacillus anthracis/pathogenicity , Bacterial Toxins/toxicity , Animals , Animals, Outbred Strains , Anthrax/immunology , Anthrax/microbiology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/therapeutic use , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacillus anthracis/physiology , Bacterial Toxins/immunology , CHO Cells , Cell Line , Cricetinae , Epitope Mapping , Humans , Macrophages , Mice , Neutralization Tests , Spores, Bacterial/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...