Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 114: 10-18, 2017 May.
Article in English | MEDLINE | ID: mdl-28246038

ABSTRACT

Тhe sensitivity to cadmium (Cd) stress of two near-isogenic wheat lines with differences at the Rht-B1 locus, Rht-B1a (tall wild type, encoding DELLA proteins) and Rht-B1c (dwarf mutant, encoding modified DELLA proteins), was investigated. The effects of 100 µM CdCl2 on plant growth, pigment content and functional activity of the photosynthetic apparatus of wheat seedlings grown on a nutrient solution were evaluated through a combination of PAM chlorophyll fluorescence, oxygen evolution, oxidation-reduction kinetics of P700 and 77 K fluorescence. The results showed that the wheat mutant (Rht-B1c) was more tolerant to Cd stress compared to the wild type (Rht-B1a), as evidenced by the lower reductions in plant growth and pigment content, lower inhibition of photosystem I (PSI) and photosystem II (PSII) photochemistry and of the oxygen evolution measured with Clark-type and Joliot-type electrodes. Furthermore, the enhanced Cd tolerance was accompanied by increased Cd accumulation within mutant plant tissues. The molecular mechanisms through which the Rht-B1c mutation improves plant tolerance to Cd stress involve structural alterations in the mutant photosynthetic membranes leading to better protection of the Mn cluster of oxygen-evolving complex and increased capacity for PSI cyclic electron transport, protecting photochemical activity of the photosynthetic apparatus under stress. This study suggests a role for the Rht-B1c-encoded DELLA proteins in protective mechanisms and tolerance of the photosynthetic apparatus in wheat plants exposed to heavy metals stress.


Subject(s)
Cadmium/toxicity , Plant Proteins/genetics , Triticum/drug effects , Triticum/genetics , Cadmium/pharmacokinetics , Carotenoids/metabolism , Chlorophyll/genetics , Chlorophyll/metabolism , Fluorescence , Mutation , Oxidation-Reduction , Oxygen/metabolism , Photosynthesis/drug effects , Photosynthesis/genetics , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Temperature , Triticum/physiology
2.
J Biosci ; 39(5): 753-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25431405

ABSTRACT

The reaction to soil drying was evaluated in two Triticum aestivum near-isogenic lines carrying different alleles of the height-reducing gene Rht-B1 based on an improved method for assessment of electrolyte leakage. The two lines were previously shown to differ in their physiological responses to induced water deficit stress. Drought was imposed for 6 days on 10-day-old seedlings. Ion efflux from leaves was measured conductometrically in multiple time points during the 24 h incubation period, and the obtained biphasic kinetics was interpreted according to a previously developed theoretical model proposing different leakage rates through the apoplast and the symplast. Most of the model parameters were able to properly differentiate the two closely related genotypes. The mutant Rht-B1c displayed lower and slower electrolyte leakage in comparison with the wild-type Rht-B1a. It was speculated that the Rht genes expressing defective DELLA proteins might be involved in water stress response through modulation of cell wall stiffness, which influences its capacity for ions retention, and also by their contribution to ROS detoxification, thus indirectly stabilizing cellular membranes. The presented analytical approach relating processes of ion and water flow in and out of the cell could be used for characterization of membrane and cell wall properties of different genotypes under normal and stress conditions.


Subject(s)
Droughts , Genotype , Ion Transport/genetics , Plant Proteins/genetics , Triticum/genetics , Alleles , Kinetics , Models, Biological , Stress, Physiological/genetics , Triticum/anatomy & histology , Triticum/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...