Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 20(12): 2304-14, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22948672

ABSTRACT

RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two "minimal core" hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation.


Subject(s)
Aptamers, Nucleotide/pharmacology , HIV-1/drug effects , HIV-1/physiology , RNA, Catalytic/metabolism , Virus Replication/drug effects , Cell Line , Humans , Real-Time Polymerase Chain Reaction
2.
Carcinogenesis ; 26(2): 309-18, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15528216

ABSTRACT

Intravascular cancer cell adhesion plays a significant role in the metastatic process. Studies indicate that galectin-3, a member of the galectin family of soluble animal lectins, is involved in carbohydrate-mediated metastatic cell heterotypic (between carcinoma cells and endothelium) and homotypic (between carcinoma cells) adhesion via interactions with the tumor-specific Thomsen-Friedenreich glycoantigen (TFAg). We hypothesized that blocking the galectin-3 carbohydrate recognition domain with synthetic peptides would significantly reduce metastasis-associated carcinoma cell adhesion. To test this hypothesis, we identified peptide antagonists of the galectin-3 carbohydrate recognition domain using combinatorial bacteriophage display technology. The peptides bound with high affinity to purified recombinant galectin-3 protein (K(d) approximately 17-80 nM) and to cell surface galectin-3. Experiments with a series of recombinant serially truncated galectin-3 mutants indicated that the peptides bound the carbohydrate recognition domain of galectin-3. Furthermore, the peptides did not bind the carbohydrate recognition domain of other galectins and plant lectins. Synthetic galectin-3 carbohydrate recognition domain-specific peptides blocked the interaction between galectin-3 and TFAg and significantly inhibited rolling and stable heterotypic adhesion of human MDA-MB-435 breast carcinoma cells to endothelial cells under flow conditions, as well as homotypic tumor cell aggregation. These results demonstrate that carbohydrate-mediated, metastasis-associated tumor cell adhesion could be inhibited efficiently with short synthetic peptides which do not mimic naturally occurring glycoepitopes yet bind to the galectin-3 carbohydrate recognition domain with high affinity and specificity.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/metabolism , Cell Adhesion/physiology , Galectin 3/metabolism , Neoplasm Metastasis/pathology , Peptide Library , Peptides/pharmacology , Bacteriophages/genetics , Cell Adhesion/drug effects , Cells, Cultured , Endothelial Cells , Humans , Mutation/genetics
3.
Mol Biol Rep ; 31(2): 121-9, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15293788

ABSTRACT

In vivo phage display is a new approach to acquire peptide molecules that bind stably to a given target. Phage peptide display libraries have been selected in mice and humans and numerous vasculature-targeting peptides have been reported. However, in vivo phage display has not typically produced molecules that extravasate to target specific organ or tumor antigens. Phage selections in animals have been performed for very short times without optimization for biodistribution or clearance rates to a particular organ. It is hypothesized that peptides that home to a desired antigen/organ can be obtained from in vivo phage experiments by optimization of incubation times, phage extraction and propagation procedures. To accomplish this goal, one must first gain a better understanding of the in vivo biodistribution and rate of clearance of engineered phage peptide display libraries. While the fate of wild type phage in rodents has been reported, the in vivo biodistribution of the commonly used engineered fd-tet M13 phage peptide display libraries (such as in the fUSE5 vector system) have not been well established. Here we report the biodistribution and clearance properties of fd-tet fifteen amino acid random peptide display libraries in fUSE5 phage in three common mouse models employed for drug discovery - CF-1, nude, and SCID mice.


Subject(s)
Bacteriophage M13/metabolism , Peptide Library , Animals , Bacteriophage M13/isolation & purification , Mice , Mice, Inbred Strains , Tissue Distribution
4.
Anal Biochem ; 331(1): 60-7, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15245997

ABSTRACT

Fluorescence spectroscopy titrations, although widely used to analyze binding affinity, are not an efficient screening method for detecting high-affinity binding among a large number of available ligands, such as during bacteriophage display selections. We hypothesize that a miniaturized, high-throughput fluorescence spectroscopy assay can be used to efficiently analyze selection results by applying the Langmuir equation to the binding data to estimate affinity constants for a large number of ligands, either as synthesized molecules or as displayed on bacteriophage. Here, bacteriophage-display-derived peptides specific for the Thomsen-Friedenreich disaccharide are used to develop a high-throughput fluorescence spectroscopy screening method, which uses one binding partner labeled with a fluorescent dye and different concentrations of a second partner to analyze binding affinity in bacteriophage display selections. The affinity constants derived from binding isotherms prepared using the new system accurately replicate those derived from standard spectroscopy titrations. Furthermore, the technique correctly defined the affinity constant describing binding of a cognate epitope peptide by a monoclonal antibody. Finally, we have applied the technique to analysis of binding affinity by ligands displayed on bacteriophage, which suggests that this technique could be used to monitor bacteriophage enrichment during selections.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigens, Tumor-Associated, Carbohydrate/chemistry , Fluorescent Dyes/chemistry , Peptide Library , Peptides/chemistry , Antibody Affinity , Spectrometry, Fluorescence , Titrimetry/methods
5.
Mol Divers ; 8(1): 35-50, 2004.
Article in English | MEDLINE | ID: mdl-14964786

ABSTRACT

The Thomsen-Friedenreich antigen, a carcinoma-associated disaccharide involved in carcinoma cell homotypic aggregation and increased metastatic potential, has clinical value as a prognostic indicator and a marker of metastasized cells. Hence, it can reasonably be predicted that antigen-binding macromolecules are valuable clinical in vivo diagnostic/therapeutic targeting agents. Recently, we have selected first-generation antigen-binding peptides from a random peptide bacteriophage display library and have applied combinatorial affinity maturation to select functionally-maturated peptides, which target cultured carcinoma cells and inhibit carcinoma cell aggregation. In the current study we hypothesize that a targeted search of sequence space surrounding the antigen-binding consensus sequence will select unpredictable amino acid sequences in the non-consensus portions of the peptides, leading to increased affinity for the carbohydrate and greater solubility in physiological buffers. This comprehensive in vitro analysis demonstrates that preferential evolution of the amino-terminal sequence of the peptides occurred, which correlated, in structure/function studies, with the acquisition of maturated function. The maturated peptides are more soluble than the earlier peptides. Studies of peptide binding to the disaccharide indicate that two maturated peptides (P-30-1, F03) have higher affinity for the antigen and bind with higher intensity to the surface of cultured human carcinoma cells than the first-generation peptides. The results support our hypothesis that affinity maturation can improve carbohydrate binding by peptides and have theoretical importance as the first report of maturation of carbohydrate-binding affinity in a small, soluble peptide.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/metabolism , Combinatorial Chemistry Techniques , Peptides/chemistry , Amino Acid Sequence , Antigens, Tumor-Associated, Carbohydrate/chemistry , Carbohydrate Metabolism , Carbohydrates/chemistry , Carcinoma/metabolism , Cell Line, Tumor , Epitope Mapping/methods , Humans , Molecular Sequence Data , Peptide Library , Peptides/metabolism , Protein Array Analysis , Protein Structure, Tertiary
6.
Curr Drug Discov Technol ; 1(2): 113-32, 2004 Jun.
Article in English | MEDLINE | ID: mdl-16472251

ABSTRACT

New tumor targeting agents are required to advance cancer diagnosis and treatment. Bacteriophage (phage) display technology, a molecular genetic means of combinatorial drug discovery, is an emerging approach to identify and improve peptide molecules as pharmaceuticals. Peptides are thought to have clinically desirable benefits over currently used biomolecules, such as antibodies, because of their rapid blood clearance, increased diffusion and tissue penetration, non-immunogenic nature and ease of synthesis. Using phage display, one can rapidly and simultaneously survey billion-clone peptide libraries, resulting in large numbers of "hits". However, only a few lead compounds resulting from the hits historically reach the drug market. Hence determining which peptide may best translate into a useful drug is of particular importance. Examination of successfully marketed drugs has highlighted key features of a winning agent, including low molecular weight, high affinity, stability, solubility, lipophilicity and conformational rigidity. Although peptide modulators of tumor cell function and cancer targeting agents have been developed, the majority of peptide-based drugs reported thus far are immune and cardiac regulators. In this review, we will highlight how phage display has been employed to isolate peptides that target key steps in cancer progression--from tumor growth to metastasis--and how phage display technology can be harnessed to select a priori peptides with inherent features essential for anti-cancer drug efficacy. In 2003, phage display provided us with several novel peptides not only in clinical trials but approved by the FDA for use as therapeutics in a variety of diseases--suggesting that the future looks bright for phage display in anti-cancer drug development.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical/methods , Peptide Library , Animals , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Peptides/pharmacology
7.
Bioconjug Chem ; 14(6): 1083-95, 2003.
Article in English | MEDLINE | ID: mdl-14624621

ABSTRACT

The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene has been associated with the transformation of benign lesions to malignancy, disease progression, poor prognosis, reduced survival, and development of resistance to radiation and chemotherapy in many types of cancer. The objective of this work was to synthesize an antisense peptide nucleic acid (PNA) complementary to the first six codons of the bcl-2 open reading frame, conjugated to a membrane-permeating peptide for intracellular delivery, and modified with a bifunctional chelating agent for targeting imaging and therapeutic radiometals to tumors overexpressing bcl-2. Four peptide-PNA constructs were synthesized by a combination of manual and automated stepwise elongation techniques, including bcl-2 antisense conjugates and nonsense conjugates with no complementarity to any known mammalian gene or DNA sequence. The PNA sequences were synthesized manually by solid-phase 9-fluorenylmethoxycarbonyl (Fmoc) techniques. Then a fully protected lysine monomer, modified with 1,4,7,10-tetraazacyclododecane-N,N',N'',N'"-tetraacetic acid (DOTA) for radiometal chelation, was coupled manually to each PNA sequence. Synthesis of the DOTA-PNA conjugates was followed by automated elongation with a peptide sequence (PTD-4-glycine, PTD-4-G), known to mediate cellular internalization of impermeable effector molecules, or its retro-inverso analogue (ri-PTD-4-G). Preparation of the four conjugates required an innovative synthetic strategy, using mild acid conditions to generate hydrophobic, partially deprotected intermediates. These intermediates were purified by semipreparative reversed-phase HPLC and completely deprotected to yield pure peptide-PNA conjugates in 6% to 9% overall yield. Using modifications of this synthetic strategy, the ri-PTD-4-G conjugate of bcl-2 antisense PNA was prepared using a lysine derivative of tetramethylrhodamine (TMR) for fluorescence microscopy. Plasma stability studies showed that (111)In-DOTA-labeled ri-PTD-4-G-anti-bcl-2 PNA was stable for 168 h at 37 degrees C, unlike the conjugate containing the parent peptide sequence. Scanning confocal fluorescence microscopy of TMR-labeled ri-PTD-4-G-anti-bcl-2 PNA in Raji lymphoma cells demonstrated that the retro-inverso peptide was active in membrane permeation and mediated cellular internalization of the antisense PNA into the cytoplasm, where high concentrations of bcl-2 mRNA are expected to be present.


Subject(s)
Antineoplastic Agents/chemical synthesis , Genes, bcl-2 , Lymphoma, B-Cell/genetics , Peptide Nucleic Acids/chemical synthesis , Peptides/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chromatography, High Pressure Liquid , Drug Delivery Systems , Fluorescent Dyes , Gene Expression Regulation, Neoplastic/drug effects , Genes, bcl-2/drug effects , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Indium Radioisotopes , Microscopy, Confocal , Molecular Structure , Peptide Nucleic Acids/pharmacology , Peptides/pharmacology , Proto-Oncogene Mas , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhodamines/chemistry , Spectrometry, Fluorescence
8.
J Cell Biochem ; 90(3): 509-17, 2003 Oct 15.
Article in English | MEDLINE | ID: mdl-14523985

ABSTRACT

Peptides possess appropriate pharmacokinetic properties to serve as cancer imaging or therapeutic targeting agents. Currently, only a small number of rationally-derived, labeled peptide analogues that target only a limited subset of antigens are available. Thus, finding new cancer targeting peptides is a central goal in the field of molecular targeting. Novel tumor-avid peptides can be efficiently identified via affinity selections using complex random peptide libraries containing millions of peptides that are displayed on bacteriophage. In vitro and in situ affinity selections may be used to identify peptides with high affinity for the target antigen in vitro. Unfortunately, it has been found that peptides selected in vitro or in situ may not effectively target tumors in vivo due to poor peptide stability and other problems. To improve in vivo targeting, methodological combinatorial chemistry innovations allow selections to be conducted in the environment of the whole animal. Thus, new targeting peptides with optimal in vivo properties can be selected in vivo in tumor-bearing animals. In vivo selections have been proven successful in identifying peptides that target the vasculature of specific organs. In addition, in vivo selections have identified peptides that bind specifically to the surface of or are internalized into tumor cells. In the future, direct selection of peptides for cancer imaging may be expedited using genetically engineered bacteriophage libraries that encode peptides with intrinsic radiometal-chelation or fluorescent sequences.


Subject(s)
Neoplasms/therapy , Peptide Library , Peptides/therapeutic use , Amino Acid Sequence , Animals , Combinatorial Chemistry Techniques , Diagnostic Imaging , Drug Delivery Systems , Mice , Molecular Sequence Data , Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Tumor Cells, Cultured
9.
J Protein Chem ; 22(2): 193-204, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12760424

ABSTRACT

Thomsen-Friedenreich (TF) antigen occurs on approximately 90% of human carcinomas, is likely involved in carcinoma cell homotypic aggregation, and has clinical value as a prognostic indicator and marker of metastasized cells. Previously, we isolated anti-TF antigen peptides from bacteriophage display libraries. These bound to TF antigen on carcinoma cells but were of low affinity and solubility. We hypothesized that peptide amino acid sequence changes would result in increased affinity and solubility, which would translate into improved carcinoma cell binding and increased inhibition of aggregation. The new peptides were more soluble and exhibited up to fivefold increase in affinity (Kd approximately equal to 60 nM). They bound cultured human breast and prostate carcinoma cells at low concentrations, whereas the earlier peptides did not. Moreover, the new peptides were potent inhibitors of homotypic aggregation. The maturated peptides will have expanded applications in basic studies of the TF antigen and particular utility as clinical carcinoma-targeting agents.


Subject(s)
Antibodies/immunology , Antigens, Neoplasm/immunology , Antigens, Tumor-Associated, Carbohydrate/immunology , Bacteriophages/genetics , Peptides/chemical synthesis , Amino Acid Sequence , Antibodies/chemistry , Antibody Affinity , Antibody Specificity , Bacteriophages/immunology , Breast Neoplasms , Cell Adhesion/immunology , Cell Aggregation/immunology , Cell Membrane/immunology , Female , Fluorescent Dyes , Humans , Male , Microscopy, Confocal , Molecular Sequence Data , Peptide Library , Peptides/antagonists & inhibitors , Peptides/immunology , Prostatic Neoplasms , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...