Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39185225

ABSTRACT

Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can "walk" across the tissue, termed "patch-walking." We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e., 58 bidirectional probed connections) averaging 91 µm intersomatic distance, finding 3 connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.

2.
J Neurosci Methods ; 394: 109898, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37236404

ABSTRACT

Brain organoids represent a new model system for studying developmental human neurophysiology. Methods for studying the electrophysiology and morphology of single neurons in organoids require acute slices or dissociated cultures. While these methods have advantages (e.g., visual access, ease of experimentation), they risk damaging cells and circuits present in the intact organoid. To access single cells within intact organoid circuits, we have demonstrated a method for fixturing and performing whole cell patch clamp recording from intact brain organoids using both manual and automated tools. We demonstrate applied electrophysiology methods development followed by an integration of electrophysiology with reconstructing the morphology of the neurons within the brain organoid using dye filling and tissue clearing. We found that whole cell patch clamp recordings could be achieved both on the surface and within the interior of intact human brain organoids using both manual and automated methods. Manual experiments were higher yield (53 % whole cell success rate manual, 9 % whole cell success rate automated), but automated experiments were more efficient (30 patch attempts per day automated, 10 patch attempts per day manual). Using these methods, we performed an unbiased survey of cells within human brain organoids between 90 and 120 days in vitro (DIV) and present preliminary data on morphological and electrical diversity in human brain organoids. The further development of intact brain organoid patch clamp methods could be broadly applicable to studies of cellular, synaptic, and circuit-level function in the developing human brain.


Subject(s)
Brain , Neurons , Humans , Neurons/physiology , Brain/physiology , Electrophysiological Phenomena , Patch-Clamp Techniques , Organoids
3.
Bio Protoc ; 11(14): e4085, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34395724

ABSTRACT

The whole-cell patch-clamp method is a gold standard for single-cell analysis of electrical activity, cellular morphology, and gene expression. Prior to our discovery that patch-clamp pipettes could be cleaned and reused, experimental throughput and automation were limited by the need to replace pipettes manually after each experiment. This article presents an optimized protocol for pipette cleaning, which enables it to be performed quickly (< 30 s), resulting in a high yield of whole-cell recording success rate (> 90%) for over 100 reuses of a single pipette. For most patch-clamp experiments (< 30 whole-cell recordings per day), this method enables a single pipette to be used for an entire day of experiments. In addition, we describe easily implementable hardware and software as well as troubleshooting tips to help other labs implement this method in their own experiments. Pipette cleaning enables patch-clamp experiments to be performed with higher throughput, whether manually or in an automated fashion, by eliminating the tedious and skillful task of replacing pipettes. From our experience with numerous electrophysiology laboratories, pipette cleaning can be integrated into existing patch-clamp setups in approximately one day using the hardware and software described in this article. Graphic abstract: Rapid enzymatic cleaning for reuse of patch-clamp pipettes.

4.
J Neural Eng ; 16(4): 046003, 2019 08.
Article in English | MEDLINE | ID: mdl-30970335

ABSTRACT

OBJECTIVE: Intracellular patch-clamp electrophysiology, one of the most ubiquitous, high-fidelity techniques in biophysics, remains laborious and low-throughput. While previous efforts have succeeded at automating some steps of the technique, here we demonstrate a robotic 'PatcherBot' system that can perform many patch-clamp recordings sequentially, fully unattended. APPROACH: Comprehensive automation is accomplished by outfitting the robot with machine vision, and cleaning pipettes instead of manually exchanging them. MAIN RESULTS: the PatcherBot can obtain data at a rate of 16 cells per hour and work with no human intervention for up to 3 h. We demonstrate the broad applicability and scalability of this system by performing hundreds of recordings in tissue culture cells and mouse brain slices with no human supervision. Using the PatcherBot, we also discovered that pipette cleaning can be improved by a factor of three. SIGNIFICANCE: The system is potentially transformative for applications that depend on many high-quality measurements of single cells, such as drug screening, protein functional characterization, and multimodal cell type investigations.


Subject(s)
Brain/physiology , Electrophysiological Phenomena/physiology , Patch-Clamp Techniques/methods , Robotics/methods , Animals , Brain/cytology , Cells, Cultured , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Patch-Clamp Techniques/instrumentation , Robotics/instrumentation
5.
Langmuir ; 32(40): 10394-10401, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27605308

ABSTRACT

The photocleaving dynamics of colloidal microRNA-functionalized nanoparticles are studied using time-dependent second harmonic generation (SHG) measurements. Model drug-delivery systems composed of oligonucleotides attached to either silver nanoparticles or polystyrene nanoparticles using a nitrobenzyl photocleavable linker are prepared and characterized. The photoactivated controlled release is observed to be most efficient on resonance at 365 nm irradiation, with pseudo-first-order rate constants that are linearly proportional to irradiation powers. Additionally, silver nanoparticles show a 6-fold plasmon enhancement in photocleaving efficiency over corresponding polystyrene nanoparticle rates, while our previous measurements on gold nanoparticles show a 2-fold plasmon enhancement compared to polystyrene nanoparticles. Characterizations including extinction spectroscopy, electrophoretic mobility, and fluorimetry measurements confirm the analysis from the SHG results. The real-time SHG measurements are shown to be a highly sensitive method for investigating plasmon-enhanced photocleaving dynamics in model drug delivery systems.


Subject(s)
Drug Carriers/radiation effects , Metal Nanoparticles/radiation effects , MicroRNAs/radiation effects , Polystyrenes/radiation effects , Silver/chemistry , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Liberation , Kinetics , Light , Metal Nanoparticles/chemistry , MicroRNAs/chemistry , Polystyrenes/chemical synthesis , Polystyrenes/chemistry , Second Harmonic Generation Microscopy , Surface Plasmon Resonance
6.
Langmuir ; 31(36): 9983-90, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26313536

ABSTRACT

Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system.


Subject(s)
Colloids , Gold/chemistry , Metal Nanoparticles/chemistry , MicroRNAs/chemistry , Microscopy, Electron, Transmission , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...