Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 19(5): e1900036, 2019 05.
Article in English | MEDLINE | ID: mdl-30938926

ABSTRACT

Poly-d-lysine (PDL) and poly-l-lysine are standard surfaces for culturing neural cells; however, both are relatively unstable, costly, and the coated surface typically must be prepared immediately before use. Here, polyelectrolyte multilayers (PEMs) are employed as highly stable, relatively inexpensive, alternative substrates to support primary neural cell culture. Initial findings identify specific silk-based PEMs that significantly outperform the capacity of PDL to promote neuronal survival and process extension. Based on these results, a library of PEM variants, including commercial and bio-sourced polyelectrolytes, is generated and three silk-based PEMs that substantially outperform PDL as a substrate for primary neurons in cell culture are identified. Further, testing these PEM variants as substrates for primary oligodendrocyte progenitors demonstrates that one silk-based PEM functions significantly better than PDL. These findings reveal specificity of cellular responses, indicating that PEMs may be tuned to optimally support different neural cell types.


Subject(s)
Cell Proliferation , Extracellular Matrix/chemistry , Neurons/metabolism , Polyelectrolytes , Polylysine , Animals , Cell Survival/drug effects , Cells, Cultured , Neurons/cytology , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Polylysine/chemistry , Polylysine/pharmacology , Rats , Rats, Sprague-Dawley , Surface Properties
2.
Langmuir ; 34(30): 8709-8730, 2018 07 31.
Article in English | MEDLINE | ID: mdl-29481757

ABSTRACT

Growing primary cells and tissue in long-term cultures, such as primary neural cell culture, presents many challenges. A critical component of any environment that supports neural cell growth in vivo is an appropriate 2-D surface or 3-D scaffold, typically in the form of a thin polymer layer that coats an underlying plastic or glass substrate and aims to mimic critical aspects of the extracellular matrix. A fundamental challenge to mimicking a hydrophilic, soft natural cell environment is that materials with these properties are typically fragile and are difficult to adhere to and stabilize on an underlying plastic or glass cell culture substrate. In this review, we highlight the current state of the art and overview recent developments of new artificial extracellular matrix (ECM) surfaces for in vitro neural cell culture. Notably, these materials aim to strike a balance between being hydrophilic and soft while also being thick, stable, robust, and bound well to the underlying surface to provide an effective surface to support long-term cell growth. We focus on improved surface and scaffold coating systems that can mimic the natural physicochemical properties that enhance neuronal survival and growth, applied as soft hydrophilic polymer coatings for both in vitro cell culture and for implantable neural probes and 3-D matrixes that aim to enhance stability and longevity to promote neural biocompatibility in vivo. With respect to future developments, we outline four emerging principles that serve to guide the development of polymer assemblies that function well as artificial ECMs: (a) design inspired by biological systems and (b) the employment of principles of aqueous soft bonding and self-assembly to achieve (c) a high-water-content gel-like coating that is stable over time in a biological environment and possesses (d) a low modulus to more closely mimic soft, compliant real biological tissue. We then highlight two emerging classes of thick material coatings that have successfully captured these guiding principles: layer-by-layer deposited water-soluble polymers (LbL) and silk fibroin (SF) materials. Both materials can be deposited from aqueous solution yet transition to a water-insoluble coating for long-term stability while retaining a softness and water content similar to those of biological materials. These materials hold great promise as next-generation biocompatible coatings for tissue engineers and for chemists and biologists within the biomedical field.


Subject(s)
Cell Culture Techniques/methods , Extracellular Matrix/chemistry , Polymers/chemistry , Tissue Engineering , Cell Culture Techniques/instrumentation , Cell Proliferation , Coated Materials, Biocompatible , Glass , Plastics
3.
Soft Matter ; 13(16): 2903-2906, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28368427

ABSTRACT

Azobenzene modification of Bombyx mori silkworm silk creates a photo-responsive 'azosilk' biomaterial, allowing for 3D laser patterning. Written regions fluoresce, and become fluid-filled raised 'micro-blisters' with a 10-fold photo-softening effect of the modulus. Patterning is facile and versatile, with potential applications as soft tunable materials for dynamic cell guidance and microfluidics.

4.
Inorg Chem ; 50(21): 11222-7, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21981304

ABSTRACT

Density functional theory (DFT) calculations of [K(18-crown-6)SiH(3)] (1) and KSiH(3) (2) have shown that both the classical tet and non-classical inv coordination modes of the [SiH(3)](-) anion to the K(+) ion are energetically accessible. Single-crystal X-ray structures of the tet and inv derivatives [K(18-crown-6)SiH(3)·THF] (1a) and [K(18-crown-6)SiH(3)·HSiPh(3)] (1b) confirm this conclusion, showing that small changes in the coordination sphere of the metal are sufficient to alter the orientation of the anion. A topological analysis of the calculated electron densities for 1 and 2 reveals that the K···Si interaction in the tet conformer of 2 possesses a significant amount of covalent character. In contrast, the inv form of 2 displays primarily electrostatic character for the K···Si and K···H interactions. Incorporation of the 18-crown-6 ligand in 1 reduces the polarizing power of the K(+) cation, hardening the cation-anion interaction in both conformers. The experimental structures of 1a and 1b bear out these conclusions, with the strongly bound tetrahydrofuran (THF) ligand softening the K(+) ion in 1a and favoring the tet conformer, while the weakly interacting HSiPh(3) ligand in 1b has minimal effect on the K(+) center, resulting in an inv orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...