Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Syst Biol Appl ; 10(1): 69, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914538

ABSTRACT

Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.


Subject(s)
Inflammatory Bowel Diseases , Single-Cell Analysis , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Single-Cell Analysis/methods , Humans , Mice , Animals , Flow Cytometry/methods , Colitis/genetics , Colitis/immunology , Longitudinal Studies
2.
Geroscience ; 46(2): 1627-1639, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37698783

ABSTRACT

Understanding the mechanisms of geroprotective interventions is central to aging research. We compare four prominent interventions: senolysis, caloric restriction, in vivo partial reprogramming, and heterochronic parabiosis. Using published mice transcriptomic data, we juxtapose these interventions against normal aging. We find a gene expression program common to all four interventions, in which inflammation is reduced and several metabolic processes, especially fatty acid metabolism, are increased. Normal aging exhibits the inverse of this signature across multiple organs and tissues. A similar inverse signature arises in three chronic inflammation disease models in a non-aging context, suggesting that the shift in metabolism occurs downstream of inflammation. Chronic inflammation is also shown to accelerate transcriptomic age. We conclude that a core mechanism of geroprotective interventions acts through the reduction of inflammation with downstream effects that restore fatty acid metabolism. This supports the notion of directly targeting genes associated with these pathways to mitigate age-related deterioration.


Subject(s)
Aging , Inflammation , Mice , Animals , Aging/genetics , Aging/metabolism , Inflammation/genetics , Transcriptome , Caloric Restriction , Fatty Acids
3.
Cancer Discov ; 13(12): 2610-2631, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37756565

ABSTRACT

Cancer mortality primarily stems from metastatic recurrence, emphasizing the urgent need for developing effective metastasis-targeted immunotherapies. To better understand the cellular and molecular events shaping metastatic niches, we used a spontaneous breast cancer lung metastasis model to create a single-cell atlas spanning different metastatic stages and regions. We found that premetastatic lungs are infiltrated by inflammatory neutrophils and monocytes, followed by the accumulation of suppressive macrophages with the emergence of metastases. Spatial profiling revealed that metastasis-associated immune cells were present in the metastasis core, with the exception of TREM2+ regulatory macrophages uniquely enriched at the metastatic invasive margin, consistent across both murine models and human patient samples. These regulatory macrophages (Mreg) contribute to the formation of an immune-suppressive niche, cloaking tumor cells from immune surveillance. Our study provides a compendium of immune cell dynamics across metastatic stages and niches, informing the development of metastasis-targeting immunotherapies. SIGNIFICANCE: Temporal and spatial single-cell analysis of metastasis stages revealed new players in modulating immune surveillance and suppression. Our study highlights distinct populations of TREM2 macrophages as modulators of the microenvironment in metastasis, and as the key immune determinant defining metastatic niches, pointing to myeloid checkpoints to improve therapeutic strategies. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Mice , Humans , Animals , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lung Neoplasms/pathology , Lung/pathology , Macrophages , Tumor Microenvironment , Neoplasm Metastasis/pathology , Membrane Glycoproteins , Receptors, Immunologic
4.
Sci Immunol ; 8(81): eadd8005, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36867679

ABSTRACT

FDA-approved anti-PD-L1 monoclonal antibodies (mAbs) bear the IgG1 isotype, whose scaffolds are either wild-type (e.g., avelumab) or Fc-mutated and lacking Fcγ receptor (FcγR) engagement (e.g., atezolizumab). It is unknown whether variation in the ability of the IgG1 Fc region to engage FcγRs renders mAbs with superior therapeutic activity. In this study, we used humanized FcγR mice to study the contribution of FcγR signaling to the antitumor activity of human anti-PD-L1 mAbs and to identify an optimal human IgG scaffold for PD-L1 mAbs. We observed similar antitumor efficacy and comparable tumor immune responses in mice treated with anti-PD-L1 mAbs with wild-type and Fc-mutated IgG scaffolds. However, in vivo antitumor activity of the wild-type anti-PD-L1 mAb avelumab was enhanced by combination treatment with an FcγRIIB-blocking antibody, which was co-administered to overcome the suppressor function of FcγRIIB in the tumor microenvironment (TME). We performed Fc glycoengineering to remove the fucose subunit from the Fc-attached glycan of avelumab to enhance its binding to the activating FcγRIIIA. Treatment with the Fc-afucosylated version of avelumab also enhanced antitumor activity and induced stronger antitumor immune responses compared with the parental IgG. The enhanced effect by afucosylated PD-L1 antibody was dependent on neutrophils and associated with decreased frequencies of PD-L1+ myeloid cells and increased infiltration of T cells in the TME. Our data reveal that the current design of FDA-approved anti-PD-L1 mAbs does not optimally harness FcγR pathways and suggest two strategies to enhance FcγR engagement to optimize anti-PD-L1 immunotherapy.


Subject(s)
Antibodies, Monoclonal , Receptors, IgG , Humans , Animals , Mice , Immunoglobulin G , Immune Checkpoint Inhibitors , Immunotherapy
6.
Nat Cancer ; 3(11): 1336-1350, 2022 11.
Article in English | MEDLINE | ID: mdl-36302895

ABSTRACT

Despite the clinical success of checkpoint inhibitors, a substantial gap still exists in our understanding of their mechanism of action. While antibodies to cytotoxic T lymphocyte-associated protein-4 (CTLA-4) were developed to block inhibitory signals in T cells, several recent studies have demonstrated that Fcγ receptor (FcγR)-dependent depletion of regulatory T cells (Treg) is critical for antitumor activity. Here, using single-cell RNA sequencing, we dissect the impact of anti-CTLA-4-blocking, Treg cell-depleting and FcR-engaging activity on the immune response within tumors. We observed a rapid remodeling of the innate immune landscape as early as 24 h after treatment. Using genetic Treg cell ablation models, we show that immune remodeling was not driven solely by Treg cell depletion or CTLA-4 blockade but mainly through FcγR engagement, downstream activation of type I interferon signaling and reduction of suppressive macrophages. Our findings indicate that FcγR engagement and innate immune remodeling are involved in successful anti-CTLA-4 treatment, supporting the development of optimized immunotherapy agents bearing these features.


Subject(s)
Interferon Type I , Tumor Microenvironment , Receptors, IgG , T-Lymphocytes, Regulatory , Immunity, Innate
7.
Immunity ; 54(6): 1320-1337.e4, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33945787

ABSTRACT

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are heterogenous innate lymphocytes broadly defined in mice as Lin-NK1.1+NKp46+ cells that express the transcription factor T-BET and produce interferon-γ. The ILC1 definition primarily stems from studies on liver and small intestinal populations. However, NK1.1+NKp46+ cells in the salivary glands, uterus, adipose, and other tissues exhibit nonuniform programs that differ from those of liver or intestinal ILC1s or NK cells. Here, we performed single-cell RNA sequencing on murine NK1.1+NKp46+ cells from blood, spleen, various tissues, and solid tumors. We identified gene expression programs of tissue-specific ILC1s, tissue-specific NK cells, and non-tissue-specific populations in blood, spleen, and other tissues largely corresponding to circulating cells. Moreover, we found that circulating NK cell programs were reshaped in tumor-bearing mice. Core programs of circulating and tumor NK cells paralleled conserved human NK cells signatures, advancing our understanding of the human NK-ILC1 spectrum.


Subject(s)
Immunity, Innate/immunology , Killer Cells, Natural/immunology , Lymphocytes/immunology , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily B/immunology , Natural Cytotoxicity Triggering Receptor 1/immunology , Neoplasms/immunology , Single-Cell Analysis/methods , Transcription Factors/immunology
8.
Nat Commun ; 9(1): 5435, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575733

ABSTRACT

Cellular senescence is a stress response that imposes stable cell-cycle arrest in damaged cells, preventing their propagation in tissues. However, senescent cells accumulate in tissues in advanced age, where they might promote tissue degeneration and malignant transformation. The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. Here we show that Prf1-/- mice with impaired cell cytotoxicity exhibit both higher senescent-cell tissue burden and chronic inflammation. They suffer from multiple age-related disorders and lower survival. Strikingly, pharmacological elimination of senescent-cells by ABT-737 partially alleviates accelerated aging phenotype in these mice. In LMNA+/G609G progeroid mice, impaired cell cytotoxicity further promotes senescent-cell accumulation and shortens lifespan. ABT-737 administration during the second half of life of these progeroid mice abrogates senescence signature and increases median survival. Our findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.


Subject(s)
Cellular Senescence , Immunosenescence , Perforin/physiology , Animals , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Drug Evaluation, Preclinical , Female , Inflammation/etiology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitrophenols/pharmacology , Nitrophenols/therapeutic use , Piperazines/pharmacology , Piperazines/therapeutic use , Progeria/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
9.
Proc Natl Acad Sci U S A ; 114(25): 6480-6485, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28566499

ABSTRACT

Feynman stated that the double-slit experiment "…has in it the heart of quantum mechanics. In reality, it contains the only mystery" and that "nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it" [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures on Physics]. We rise to the challenge with an alternative to the wave function-centered interpretations: instead of a quantum wave passing through both slits, we have a localized particle with nonlocal interactions with the other slit. Key to this explanation is dynamical nonlocality, which naturally appears in the Heisenberg picture as nonlocal equations of motion. This insight led us to develop an approach to quantum mechanics which relies on pre- and postselection, weak measurements, deterministic, and modular variables. We consider those properties of a single particle that are deterministic to be primal. The Heisenberg picture allows us to specify the most complete enumeration of such deterministic properties in contrast to the Schrödinger wave function, which remains an ensemble property. We exercise this approach by analyzing a version of the double-slit experiment augmented with postselection, showing that only it and not the wave function approach can be accommodated within a time-symmetric interpretation, where interference appears even when the particle is localized. Although the Heisenberg and Schrödinger pictures are equivalent formulations, nevertheless, the framework presented here has led to insights, intuitions, and experiments that were missed from the old perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...