Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(8): 086004, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23370466

ABSTRACT

We report on the characterization of the mixed layered lanthanum iron manganese oxyselenide La(2)O(3)FeMnSe(2), where Fe and Mn share the same crystallographic position. The susceptibility data show a magnetic transition temperature of 76 K and a strong difference between field cooled and zero field cooled (ZFC) data at low fields. While the ZFC magnetization curve exhibits negative values below about 45 K, hysteresis measurement reveals, after an initial negative magnetic moment, a hysteresis loop typical for ferromagnetic material, pointing to competing ferromagnetic and antiferromagnetic interactions. Resistivity and dielectric permittivity measurements indicate that La(2)O(3)FeMnSe(2) is a semiconductor. We performed x-ray diffraction at 295 K and neutron diffraction at 90 and 1.7 K. The nuclear and magnetic structure was refined in the space group I4/mmm with a = 4.11031 (3) Å and c = 18.7613 (2) Å at 295 K. We did not detect a structural distortion and the Fe and Mn atoms were randomly distributed. The magnetic order was found to be antiferromagnetic, with a propagation vector q = (0,0,0) and magnetic moments of 3.44 (5) µ(B) per Fe/Mn atom aligned within the a-b plane. This magnetic order is different with respect to the pure Fe or Mn compositions reported in other studies.


Subject(s)
Chemical Phenomena , Iron/chemistry , Lanthanum/chemistry , Magnetics , Manganese/chemistry , Neutron Diffraction , Oxides/chemistry , Selenium Compounds/chemistry , Models, Chemical , Temperature
2.
Phys Rev Lett ; 98(5): 057206, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17358896

ABSTRACT

Neutron powder diffraction and single crystal x-ray resonant magnetic scattering measurements suggest that Dy plays an active role in enhancing the ferroelectric polarization in multiferroic DyMnO3 above T(Dy)(N)=6.5 K. We observe the evolution of an incommensurate ordering of Dy moments with the same periodicity as the Mn spiral ordering. It closely tracks the evolution of the ferroelectric polarization. Below T(Dy)(N), where Dy spins order commensurately, the polarization decreases to values similar for those of TbMnO3. The higher P(s) found just above T(Dy)(N) arises from the contribution of Dy spins so as to effectively increase the amplitude of the Mn spin spiral.

3.
Phys Rev Lett ; 93(24): 247007, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15697854

ABSTRACT

We have studied the superconducting phase diagram of NaxCoO2.yH(2)O as a function of electronic doping, characterizing our samples both in terms of Na content x and the Co valence state. Our findings are consistent with a recent report that intercalation of H3O+ ions into NaxCoO2, together with water, acts as an additional dopant, indicating that Na substoichiometry alone does not control the electronic doping of these materials. We find a superconducting phase diagram where optimal T(C) is achieved through a Co valence range of 3.24-3.35, while T(C) decreases for materials with a higher Co valence. The critical role of dimensionality in achieving superconductivity is highlighted by similarly doped nonsuperconducting anhydrous samples, differing from the superconducting hydrate only in interlayer spacing.

SELECTION OF CITATIONS
SEARCH DETAIL
...