Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pituitary ; 24(3): 351-358, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33433890

ABSTRACT

CONTEXT: Somatostatin (SST) and dopamine (DA) inhibit growth hormone (GH) secretion and proliferation of GH-secreting pituitary adenomas (GHomas) through binding to SSTR2 and D2R receptors. Chimeric SST-DA compounds (Dopastatins) display increased potency in inhibiting GH secretion, as compared with individual SST or DA analogs (alone or combined). OBJECTIVE: To assess the efficacy of a second-generation dopastatin, TBR-065, in suppressing GH secretion from human GH- and GH/prolactin(PRL)-omas. DESIGN: We compared the ability of TBR-065 to inhibit GH secretion from primary cultures of human GH- or GH/PRLoma cells to that of the first generation dopastatin, TBR-760 (formerly BIM-23A760), octreotide (OCT) and cabergoline (CAB), the later either alone or combined. We investigated whether there was any impact of BIM-133, the metabolite of TBR-065, on the ability of TBR-065 to inhibit GH in these cultures. METHODS: 17 GH- and GH/PRLomas were included in this study. Inhibition of GH secretion by TBR-065, TBR-760, OCT and CAB (0.1 pM to 0.1 µM) was assessed over a period of 8 h. RESULTS: All tumors expressed SSTR2 and D2R mRNAs. GH suppression was higher with TBR-065 as compared with TBR-760 (Emax = 57 ± 5.6% vs. 41.1 ± 12.5%, respectively, p < 0.001) or with OCT + CAB (Emax = 56.8 ± 7.2% vs. 44.4 ± 9.4%, p < 0.001). BIM-133 did not have any impact on the activity of TBR-065. CONCLUSION: TBR-065 has significantly improved efficacy in suppressing GH secretion as compared to current available therapies and may represent a new promising option for the treatment of acromegaly.


Subject(s)
Adenoma , Human Growth Hormone , Pituitary Neoplasms , Adenoma/drug therapy , Cabergoline , Dopamine , Humans , Octreotide/pharmacology , Pituitary Neoplasms/drug therapy , Receptors, Dopamine D2 , Receptors, Somatostatin/genetics , Somatostatin/pharmacology , Tumor Cells, Cultured
2.
Neuroendocrinology ; 110(1-2): 70-82, 2020.
Article in English | MEDLINE | ID: mdl-31272096

ABSTRACT

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) represent approximately 15% of all intracranial tumors and usually are associated with severe comorbidities. Unfortunately, a relevant number of patients do not respond to currently available pharmacological treatments, that is, somatostatin analogs (SSAs) or dopamine-agonists (DA). Thus, novel, chimeric somatostatin/dopamine compounds (dopastatins) that could improve medical treatment of PitNETs have been designed. OBJECTIVE: This study aims to determine the direct therapeutic effects of a new-generation dopastatin, BIM-065, on primary cell cultures from different PitNETs subtypes. METHODS: Thirty-one PitNET-derived cell cultures (9 corticotropinomas, 9 somatotropinomas, 11 nonfunctioning pituitary adenomas [NFPAs], and 2 prolactinomas), were treated with BIM-065, and key functional endpoints were assessed (cell viability, apoptosis, hormone secretion, expression levels of key genes, free cytosolic [Ca2+]i dynamics, etc.). AtT-20 cell line was used to evaluate signaling pathways in response to BIM-065. RESULTS: This chimeric compound decreased cell viability in all corticotropinomas and somatotropinomas tested, but not in NFPAs. BIM-065 reduced ACTH, GH, chromogranin-A and PRL secretion, and increased apoptosis in corticotropinomas, somatotropinomas, and NFPAs. These effects were possibly mediated through modulation of pivotal signaling cascades like [Ca2+]i kinetic and Akt- or ERK1/2-phosphorylation. CONCLUSIONS: Our results unveil a robust antitumoral effect in vitro of the novel chimeric compound BIM-065 on the main PitNET subtypes, inform on the mechanisms involved, and suggest that BIM-065 could be an efficacious therapeutic option to be considered in the treatment of PitNETs.


Subject(s)
Dopamine Agents/pharmacology , Dopamine/analogs & derivatives , Neuroendocrine Tumors/drug therapy , Pituitary Neoplasms/drug therapy , Somatostatin/analogs & derivatives , Somatostatin/pharmacology , Dopamine/pharmacology , Humans , Somatostatin/analysis , Tumor Cells, Cultured
3.
J Biol Chem ; 280(45): 37471-80, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16154995

ABSTRACT

The cytokine-inducible SH2 domain-containing protein CIS inhibits signaling from the growth hormone (GH) receptor (GHR) to STAT5b by a proteasome-dependent mechanism. Here, we used the GH-responsive rat liver cell line CWSV-1 to investigate the role of CIS and the proteasome in GH-induced GHR internalization. Cell-surface GHR localization and internalization were monitored in GH-stimulated cells by confocal immunofluorescence microscopy using an antibody directed against the GHR extracellular domain. In GH naïve cells, GHR was detected in small, randomly distributed granules on the cell surface and in the cytoplasm, with accumulation in the perinuclear area. GH treatment induced a rapid (within 5 min) internalization of GH.GHR complexes, which coincided with the onset of GHR tyrosine phosphorylation and the appearance in the cytosol of distinct granular structures containing internalized GH. GHR signaling to STAT5b continued for approximately 30-40 min, however, indicating that GHR signaling and deactivation of the GH.GHR complex both proceed from an intracellular compartment. The internalization of GH and GHR was inhibited by CIS-R107K, a dominant-negative SH2 domain mutant of CIS, and by the proteasome inhibitors MG132 and epoxomicin, which prolong GHR signaling to STAT5b. GH pulse-chase studies established that the internalized GH.GHR complexes did not recycle back to the cell surface in significant amounts under these conditions. Given the established specificity of CIS-R107K for blocking the GHR signaling inhibitory actions of CIS, but not those of other SOCS/CIS family members, these findings implicate CIS and the proteasome in the control of GHR internalization following receptor activation and suggest that CIS-dependent receptor internalization is a prerequisite for efficient termination of GHR signaling.


Subject(s)
Endocytosis , Immediate-Early Proteins/metabolism , Receptors, Somatotropin/metabolism , src Homology Domains , Animals , Cell Line , Cell Nucleus/metabolism , Down-Regulation , Growth Hormone/metabolism , Immediate-Early Proteins/chemistry , Immediate-Early Proteins/genetics , Mutation , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Transport , Rats , STAT5 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...