Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pain Med ; 23(10): 1690-1707, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35325207

ABSTRACT

Fibromyalgia (FM) is a chronic pain disorder characterized by chronic widespread musculoskeletal pain (CWP), resting pain, movement-evoked pain (MEP), and other somatic symptoms that interfere with daily functioning and quality of life. In clinical studies, this symptomology is assessed, while preclinical models of CWP are limited to nociceptive assays. The aim of the study was to investigate the human-to-model translatability of clinical behavioral assessments for spontaneous (or resting) pain and MEP in a preclinical model of CWP. For preclinical measures, the acidic saline model of FM was used to induce widespread muscle pain in adult female mice. Two intramuscular injections of acidic or neutral pH saline were administered following baseline measures, 5 days apart. An array of adapted evoked and spontaneous pain measures and functional assays were assessed for 3 weeks. A novel paradigm for MEP assessment showed increased spontaneous pain following activity. For clinical measures, resting and movement-evoked pain and function were assessed in adult women with FM. Moreover, we assessed correlations between the preclinical model of CWP and in women with fibromyalgia to examine whether similar relationships between pain assays that comprise resting and MEP existed in both settings. For both preclinical and clinical outcomes, MEP was significantly associated with mechanical pain sensitivity. Preclinically, it is imperative to expand how the field assesses spontaneous pain and MEP when studying multi-symptom disorders like FM. Targeted pain assessments to match those performed clinically is an important aspect of improving preclinical to clinical translatability of animal models.


Subject(s)
Chronic Pain , Fibromyalgia , Musculoskeletal Pain , Adult , Animals , Female , Fibromyalgia/diagnosis , Humans , Mice , Pain Measurement , Quality of Life
2.
J Neurosci Methods ; 340: 108742, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32315669

ABSTRACT

BACKGROUND: Neuroimmunologists aspire to understand the interactions between neurons, microglia, and astrocytes in the CNS. To study these cells, researchers work with either immortalized cell lines or primary cells acquired from animal tissue. Primary cells reflect in vivo characteristics and functionality compared to immortalized cells; however, they are challenging to acquire and maintain. NEW METHOD: Established protocols to harvest primary glia use neonatal rodents, here we provide a method for simultaneously isolating microglia and astrocytes from brain and/or spinal cord from adult rodents. We utilized a discontinuous percoll density gradient enabling easy discrimination of these cell populations without enzymatic digestion or complex sorting techniques. RESULTS: We found cells isolated from the percoll interface between 70 %-50 % were microglia, as they express ionizing calcium-binding adaptor molecule 1 (Iba1) in immunocytochemistry and CD11bhi and CD45lo using flow cytometry. Isolated cells from the 50 %-30 % interface were astrocytes as they express glial fibrillary acidic protein (GFAP) in immunocytochemistry and Glutamate aspartate transporter (GLAST)-1 using flow cytometry. Cultured microglia and astrocytes showed a functional increase in IL-6 production after treatment of lipopolysaccharide (LPS). COMPARISON WITH EXISTING METHODS: Our method allows for rapid isolation of both microglia and astrocytes in one protocol with relatively few resources, preserves cellular phenotype, and yields high cell numbers without magnetic or antibody sorting. CONCLUSION: Here we show a novel, single protocol to isolate microglia and astrocytes from brain and spinal cord tissue, allowing for culturing and other downstream applications from the cells of animals of various ages, which will be useful for researchers investigating these two major glial cell types from the brain or spinal cord of the same rodent.


Subject(s)
Astrocytes , Microglia , Animals , Astrocytes/metabolism , Brain/metabolism , Glial Fibrillary Acidic Protein/metabolism , Microglia/metabolism , Rodentia/metabolism , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...