Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Eng Ethics ; 27(6): 70, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34796377

ABSTRACT

This paper puts forward two claims about funding carbon capture and storage. The first claim is that there are moral justifications supporting strategic investment into CO2 storage from global and regional perspectives. One argument draws on the empirical evidence which suggests carbon capture and storage would play a significant role in a portfolio of global solutions to climate change; the other draws on Rawls' notion of legitimate expectations and Moellendorf's Anti-Poverty principle. The second claim is that where to pursue this strategic investment poses a morally non-trivial problem, with considerations like near-term global distributive justice and undermining legitimate expectations favouring investing in developing regions, especially in Asia, and considerations like long-term climate impacts and best uses of resources favouring investing in the relatively wealthy regions that have the best prospects for successful storage development.


Subject(s)
Carbon , Financial Management , Carbon Dioxide , Climate Change , Social Justice
2.
Glob Chang Biol ; 26(5): 3040-3051, 2020 05.
Article in English | MEDLINE | ID: mdl-32133726

ABSTRACT

Transitioning from fossil fuels to renewable energy is fundamental for halting anthropogenic climate change. However, renewable energy facilities can be land-use intensive and impact conservation areas, and little attention has been given to whether the aggregated effect of energy transitions poses a substantial threat to global biodiversity. Here, we assess the extent of current and likely future renewable energy infrastructure associated with onshore wind, hydropower and solar photovoltaic generation, within three important conservation areas: protected areas (PAs), Key Biodiversity Areas (KBAs) and Earth's remaining wilderness. We identified 2,206 fully operational renewable energy facilities within the boundaries of these conservation areas, with another 922 facilities under development. Combined, these facilities span and are degrading 886 PAs, 749 KBAs and 40 distinct wilderness areas. Two trends are particularly concerning. First, while the majority of historical overlap occurs in Western Europe, the renewable electricity facilities under development increasingly overlap with conservation areas in Southeast Asia, a globally important region for biodiversity. Second, this next wave of renewable energy infrastructure represents a ~30% increase in the number of PAs and KBAs impacted and could increase the number of compromised wilderness areas by ~60%. If the world continues to rapidly transition towards renewable energy these areas will face increasing pressure to allow infrastructure expansion. Coordinated planning of renewable energy expansion and biodiversity conservation is essential to avoid conflicts that compromise their respective objectives.


Subject(s)
Conservation of Natural Resources , Renewable Energy , Biodiversity , Ecosystem , Europe , Wind
3.
Environ Sci Process Impacts ; 20(1): 133-144, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29261193

ABSTRACT

Effective planning of airshed pollution mitigation is often constrained by a lack of integrative analysis able to relate the relevant emitters to the receptor populations at risk. Both emitter and receptor perspectives are therefore needed to consistently inform emission and exposure reduction measures. This paper aims to extend the Pangea spatial multi-scale multimedia framework to evaluate source-to-receptor relationships of industrial sources of organic pollutants in Australia. Pangea solves a large compartmental system in parallel by block to determine arrays of masses at steady-state for 100 000+ compartments and 4000+ emission scenarios, and further computes population exposure by inhalation and ingestion. From an emitter perspective, radial spatial distributions of population intakes show high spatial variation in intake fractions from 0.68 to 33 ppm for benzene, and from 0.006 to 9.5 ppm for formaldehyde, contrasting urban, rural, desert, and sea source locations. Extending analyses to the receptor perspective, population exposures from the combined emissions of 4101 Australian point sources are more extended for benzene that travels over longer distances, versus formaldehyde that has a more local impact. Decomposing exposure per industrial sector shows petroleum and steel industry as the highest contributing industrial sectors for benzene, whereas the electricity sector and petroleum refining contribute most to formaldehyde exposures. The source apportionment identifies the main sources contributing to exposure at five locations. Overall, this paper demonstrates high interest in addressing exposures from both an emitter perspective well-suited to inform product oriented approaches such as LCA, and from a receptor perspective for health risk mitigation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Inhalation Exposure/analysis , Models, Theoretical , Australia , Benzene/analysis , Formaldehyde/analysis , Humans
4.
Water Res ; 127: 139-149, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29035767

ABSTRACT

In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply systems should consider i) climate variability and, therefore, infrastructure utilisation rate, ii) potential under-utilisation for both installed centralised and decentralised sources, and iii) the potential energy penalty for operating infrastructure well below its design capacity (e.g., the operational energy intensity of the desalination system is three times higher at low utilisation rates). This study illustrates that evaluating the life-cycle energy use and intensity of these type of supply sources without considering their realistic long-term operating scenario(s) can potentially distort and overemphasise their energy implications. To other water stressed regions, this work shows that managing long-term water demand is also important, in addition to acknowledging the energy-intensive nature of some alternative water sources.


Subject(s)
Conservation of Energy Resources , Water Supply , Cities , Conservation of Natural Resources , Drinking Water , Droughts , Queensland , Recycling , Seawater/chemistry , Water Purification/methods
6.
Environ Sci Technol ; 49(14): 8611-22, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26121005

ABSTRACT

The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.


Subject(s)
Cities , Environment , Phosphorus/isolation & purification , Wastewater/chemistry , Ecotoxicology , Eutrophication , Global Warming , Humans , Minerals/analysis , Oxidation-Reduction , Ozone/analysis , Particulate Matter/analysis , Photochemical Processes , Salinity , Seawater/chemistry
7.
Sci Total Environ ; 485-486: 241-251, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24727042

ABSTRACT

Compiling, deploying and utilising large-scale databases that integrate environmental and economic data have traditionally been labour- and cost-intensive processes, hindered by the large amount of disparate and misaligned data that must be collected and harmonised. The Australian Industrial Ecology Virtual Laboratory (IELab) is a novel, collaborative approach to compiling large-scale environmentally extended multi-region input-output (MRIO) models. The utility of the IELab product is greatly enhanced by avoiding the need to lock in an MRIO structure at the time the MRIO system is developed. The IELab advances the idea of the "mother-daughter" construction principle, whereby a regionally and sectorally very detailed "mother" table is set up, from which "daughter" tables are derived to suit specific research questions. By introducing a third tier - the "root classification" - IELab users are able to define their own mother-MRIO configuration, at no additional cost in terms of data handling. Customised mother-MRIOs can then be built, which maximise disaggregation in aspects that are useful to a family of research questions. The second innovation in the IELab system is to provide a highly automated collaborative research platform in a cloud-computing environment, greatly expediting workflows and making these computational benefits accessible to all users. Combining these two aspects realises many benefits. The collaborative nature of the IELab development project allows significant savings in resources. Timely deployment is possible by coupling automation procedures with the comprehensive input from multiple teams. User-defined MRIO tables, coupled with high performance computing, mean that MRIO analysis will be useful and accessible for a great many more research applications than would otherwise be possible. By ensuring that a common set of analytical tools such as for hybrid life-cycle assessment is adopted, the IELab will facilitate the harmonisation of fragmented, dispersed and misaligned raw data for the benefit of all interested parties.


Subject(s)
Cooperative Behavior , Laboratories , Software , User-Computer Interface , Workflow , Australia , Databases, Factual , Environment
8.
Environ Sci Technol ; 45(12): 5434-40, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21591670

ABSTRACT

Greenhouse gas emissions are likely to rise faster than growth in population and more than double for water supply and wastewater services over the next 50 years in South East Queensland (SEQ), Australia. New sources of water supply such as rainwater tanks, recycled water, and desalination currently have greater energy intensity than traditional sources. In addition, direct greenhouse gas emissions from reservoirs and wastewater treatment and handling have potentially the same magnitude as emissions from the use of energy. Centralized and decentralized water supply and wastewater systems are considered for a scenario based upon a government water supply strategy for the next 50 years. Many sources of data have large uncertainties which are estimated following the IPCC Good Practice Guidelines. Important sources of emissions with large uncertainties such as rainwater tanks and direct emissions were identified for further research and potential mitigation of greenhouse gas emissions.


Subject(s)
Gases/analysis , Greenhouse Effect , Waste Disposal, Fluid , Waste Management/methods , Water Supply/analysis , Databases as Topic , Energy-Generating Resources , Time Factors , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...