Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 31(2): 613-8, 2002.
Article in English | MEDLINE | ID: mdl-11931453

ABSTRACT

The ability of soils to adsorb and degrade pesticides strongly influences their environmental fate. This paper examines the adsorption and degradation of a weak acid, a new herbicide mesotrione 12-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione], in 15 different soils from Europe and the USA. Experiments were conducted to understand the influence of soil properties, covering a wide range of soil textures, soil pH values (4.4 to 7.5), and organic carbon contents (0.6 to 3.35%). Mesotrione adsorption (Kd values ranged from 0.13 to 5.0 L/kg) was primarily related to soil pH, and to a lesser extent by percent organic carbon (%OC). As soil pH rose. mesotrione Kd values got smaller as mesotrione dissociated from the molecular to anionic form. Mesotrione degradation (half-lives ranged from 4.5 to 32 d) was also related to soil pH, getting shorter as soil pH rose. Simple regression of mesotrione adsorption against soil pH and %OC and against degradation provided a close fit to the data. The correlation between mesotrione adsorption and degradation means that Kd and half-life values are only relevant for use in environmental fate assessment if these values are "paired" for the same soil pH and %OC. The implications were as illustrated for leaching, raising important issues about combining pesticide adsorption and degradation behavior in environmental fate assessments.


Subject(s)
Cyclohexanones/chemistry , Herbicides/chemistry , Soil Pollutants/metabolism , Adsorption , Biological Availability , Cyclohexanones/metabolism , Half-Life , Herbicides/metabolism , Hydrogen-Ion Concentration , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...