Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(3)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36985359

ABSTRACT

Loss of algal production from the crashes of algal mass cultivation systems represents a significant barrier to the economic production of microalgal-based biofuels. Current strategies for crash prevention can be too costly to apply broadly as prophylaxis. Bacteria are ubiquitous in microalgal mass production cultures, however few studies investigate their role and possible significance in this particular environment. Previously, we demonstrated the success of selected protective bacterial communities to save Microchloropsis salina cultures from grazing by the rotifer Brachionus plicatilis. In the current study, these protective bacterial communities were further characterized by fractionation into rotifer-associated, algal-associated, and free-floating bacterial fractions. Small subunit ribosomal RNA amplicon sequencing was used to identify the bacterial genera present in each of the fractions. Here, we show that Marinobacter, Ruegeria, and Boseongicola in algae and rotifer fractions from rotifer-infected cultures likely play key roles in protecting algae from rotifers. Several other identified taxa likely play lesser roles in protective capability. The identification of bacterial community members demonstrating protective qualities will allow for the rational design of microbial communities grown in stable co-cultures with algal production strains in mass cultivation systems. Such a system would reduce the frequency of culture crashes and represent an essentially zero-cost form of algal crop protection.

2.
Metabolites ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34677422

ABSTRACT

Open microalgal ponds used in industrial biomass production are susceptible to a number of biotic and abiotic environmental stressors (e.g., grazers, pathogens, pH, temperature, etc.) resulting in pond crashes with high economic costs. Identification of signature chemicals to aid in rapid, non-invasive, and accurate identification of the stressors would facilitate targeted and effective treatment to save the algal crop from a catastrophic crash. Specifically, we were interested in identifying volatile organic compounds (VOCs) that can be used to as an early diagnostic for algal crop damage. Cultures of Microchloropsis gaditana were subjected to two forms of algal crop damage: (1) active grazing by the marine rotifer, Brachionus plicatilis, or (2) repeated freeze-thaw cycles. VOCs emitted above the headspace of these algal cultures were collected using fieldable solid phase microextraction (SPME) fibers. An untargeted analysis and identification of VOCs was conducted using gas chromatography-mass spectrometry (GC-MS). Diagnostic VOCs unique to each algal crop damage mechanism were identified. Active rotifer grazing of M. gaditana was characterized by the appearance of carotenoid degradation products, including ß-cyclocitral and various alkenes. Freeze-thaw algae produced a different set of VOCs, including palmitoleic acid. Both rotifer grazing and freeze-thawed algae produced ß-ionone as a VOC, possibly suggesting a common stress-induced cellular mechanism. Importantly, these identified VOCs were all absent from healthy algal cultures of M. gaditana. Early detection of biotic or abiotic environmental stressors will facilitate early diagnosis and application of targeted treatments to prevent algal pond crashes. Thus, our work further supports the use of VOCs for monitoring the health of algal ponds to ultimately enhance algal crop yields for production of biofuel.

3.
Metabolites ; 10(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899747

ABSTRACT

Microalgae produce specific chemicals indicative of stress and/or death. The aim of this study was to perform non-destructive monitoring of algal culture systems, in the presence and absence of grazers, to identify potential biomarkers of incipient pond crashes. Here, we report ten volatile organic compounds (VOCs) that are robustly generated by the marine alga, Microchloropsis salina, in the presence and/or absence of the marine grazer, Brachionus plicatilis. We cultured M. salina with and without B. plicatilis and collected in situ volatile headspace samples using thermal desorption tubes over the course of several days. Data from four experiments were aggregated, deconvoluted, and chromatographically aligned to determine VOCs with tentative identifications made via mass spectral library matching. VOCs generated by algae in the presence of actively grazing rotifers were confirmed via pure analytical standards to be pentane, 3-pentanone, 3-methylhexane, and 2-methylfuran. Six other VOCs were less specifically associated with grazing but were still commonly observed between the four replicate experiments. Through this work, we identified four biomarkers of rotifer grazing that indicate algal stress/death. This will aid machine learning algorithms to chemically define and diagnose algal mass production cultures and save algae cultures from imminent crash to make biofuel an alternative energy possibility.

4.
Sci Rep ; 9(1): 13866, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554867

ABSTRACT

Algae ponds used in industrial biomass production are susceptible to pathogen or grazer infestation, resulting in pond crashes with high economic costs. Current methods to monitor and mitigate unhealthy ponds are hindered by a lack of early indicators that precede culture crash. We used solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to identify volatiles emitted from healthy and rotifer infested cultures of Microchloropsis salina. After 48 hours of algal growth, marine rotifers, Brachionus plicatilis, were added to the algae cultures and volatile organic compounds (VOC) were sampled from the headspace using SPME fibers. A GC-MS approach was used in an untargeted analysis of VOCs, followed by preliminary identification. The addition of B. plicatilis to healthy cultures of M. salina resulted in decreased algal cell numbers, relative to uninfected controls, and generated trans-ß-ionone and ß-cyclocitral, which were attributed to carotenoid degradation. The abundances of the carotenoid-derived VOCs increased with rotifer consumption of algae. Our results indicate that specific VOCs released by infected algae cultures may be early indicators for impending pond crashes, providing a useful tool to monitor algal biomass production and pond crash prevention.


Subject(s)
Eutrophication , Ponds/chemistry , Volatile Organic Compounds/analysis , Animals , Biomarkers/analysis , Ecology , Environmental Biomarkers , Ponds/microbiology , Rotifera , Volatile Organic Compounds/metabolism
5.
RNA Biol ; 10(4): 502-15, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23558773

ABSTRACT

Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows.


Subject(s)
Escherichia coli/genetics , Gene Expression Profiling/methods , Gene Library , Polymerase Chain Reaction/methods , Reverse Transcription , Sequence Analysis, RNA/methods , Base Sequence , Cell Line, Tumor , Computational Biology , High-Throughput Nucleotide Sequencing/methods , Humans
6.
Biotechniques ; 53(6): 373-80, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23227988

ABSTRACT

Second-generation sequencing (SGS) has become the preferred method for RNA transcriptome profiling of organisms and single cells. However, SGS analysis of transcriptome diversity (including protein-coding transcripts and regulatory non-coding RNAs) is inefficient unless the sample of interest is first depleted of nucleic acids derived from ribosomal RNA (rRNA), which typically account for up to 95% of total intracellular RNA content. Here we describe a novel microscale hydroxyapatite chromatography (HAC) normalization method to remove eukaryotic and prokaryotic high abundant rRNA species, thereby increasing sequence coverage depth and transcript diversity across non-rRNA populations. RNA-seq analysis of Escherichia coli K-12 and human intracellular total RNA showed that HAC-based normalization enriched for all non-ribosomal RNA species regardless of RNA transcript abundance or length when compared with untreated controls. Microcolumn HAC normalization generated rRNA-depleted cDNA libraries comparable to the well-established duplex specific nuclease (DSN) normalization and Ribo-Zero rRNA-depletion methods, thus establishing microscale HAC as an effective, cost saving, and non-destructive alternative normalization technique.


Subject(s)
Chromatography, Affinity/methods , Durapatite/chemistry , Gene Library , RNA/genetics , Sequence Analysis, RNA/methods , Transcriptome , Base Sequence , Chromatography, Ion Exchange/methods , Chromosome Mapping , Escherichia coli K12/genetics , Humans , Leukocytes, Mononuclear/chemistry , RNA/analysis , RNA/chemistry
7.
Biotechnol Bioeng ; 109(5): 1146-54, 2012 May.
Article in English | MEDLINE | ID: mdl-22161571

ABSTRACT

Algal biofuels are a growing interest worldwide due to their potential in terms of sustainable greenhouse gas displacement and energy production. This article describes a comparative survey of biodiesel production and conversion yields of biodiesel via alkaline transesterification of acylglycerols extracted from the microalgae Thalassiosira pseudonana and Phaeodactylum tricornutum, grown under silicate or nitrate limitation, and that of model vegetable oils: soybean, and rapeseed oil. Acylglycerols were extracted with n-hexane and the total yield per biomass was determined by gravimetric assay. Under our conditions, the total acylglycerol yield from the microalgae studied was 13-18% of total dry weight. The biodiesel samples were analyzed using gas chromatography-flame ionization detector to determine quantitative information of residual glycerol, mono-, di-, and tri-acylglycerol concentrations in the biodiesel. All of the algal-based biodiesel demonstrated less mono-, di-, and tri-acylglycerol concentrations than the vegetable-based biodiesel under identical transesterification conditions. The fatty acid compositions of all the feedstock oils and their resultant biodiesel were also analyzed and reported. Based on the fatty acid methyl ester compositions of our samples we qualitatively assessed the suitability of the algal-derived biodiesel in terms of cetane number (CN), cold-flow properties, and oxidative stability.


Subject(s)
Biofuels , Diatoms/metabolism , Glycerides/analysis , Glycerides/isolation & purification , Plant Oils/chemistry , Soybean Oil/chemistry , Chromatography, Gas , Diatoms/growth & development , Fatty Acids, Monounsaturated , Nitrogen/metabolism , Rapeseed Oil , Silicates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...