Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 41(10): 2295-2304, 2023 10.
Article in English | MEDLINE | ID: mdl-37094977

ABSTRACT

The highly variable clinical outcomes noted after intrasynovial tendon repair have been associated with an early inflammatory response leading to the development of fibrovascular adhesions. Prior efforts to broadly suppress this inflammatory response have been largely unsuccessful. Recent studies have shown that selective inhibition of IkappaB kinase beta (IKK-ß), an upstream activator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) signaling, mitigates the early inflammatory response and leads to improved tendon healing outcomes. In the current study, we test the hypothesis that oral treatment with the IKK-ß inhibitor ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinenitrile an inhibitor) will modulate the postoperative inflammatory response and improve intrasynovial flexor tendon healing. To test this hypothesis, the flexor digitorum profundus tendon of 21 canines was transected and repaired within the intrasynovial region and assessed after 3 and 14 days. Histomorphometry, gene expression analyses, immunohistochemistry, and quantitative polarized light imaging were used to examine ACHP-mediated changes. ACHP led to reduction in phosphorylated p-65, indicating that NF-κB activity was suppressed. ACHP enhanced expression of inflammation-related genes at 3 days and suppressed expression of these genes at 14 days. Histomorphometry revealed enhanced cellular proliferation and neovascularization in ACHP-treated tendons compared with time-matched controls. These findings demonstrate that ACHP effectively suppressed NF-κB signaling and modulated early inflammation, leading to increased cellular proliferation and neovascularization without stimulating the formation of fibrovascular adhesions. Together, these data suggest that ACHP treatment accelerated the inflammatory and proliferative phases of tendon healing following intrasynovial flexor tendon repair. Clinical Significance: Using a clinically relevant large-animal model, this study revealed that targeted inhibition of nuclear factor kappa-light chain enhancer of activated B cells signaling with ACHP provides a new therapeutic strategy for enhancing the repair of sutured intrasynovial tendons.


Subject(s)
NF-kappa B , Tendons , Animals , Dogs , Signal Transduction , Protein Serine-Threonine Kinases , Inflammation
2.
Stem Cells ; 41(6): 617-627, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37085269

ABSTRACT

Achilles tendon rupture is a common sports-related injury. Even with advanced clinical treatments, many patients suffer from long-term pain and functional deficits. These unsatisfactory outcomes result primarily from an imbalanced injury response with excessive inflammation and inadequate tendon regeneration. Prior studies showed that extracellular vesicles from inflammation-primed adipose-derived stem cells (iEVs) can attenuate early tendon inflammatory response to injury. It remains to be determined if iEVs can both reduce inflammation and promote regeneration in the later phases of tendon healing and the underlying mechanism. Therefore, this study investigated the mechanistic roles of iEVs in regulating tendon injury response using a mouse Achilles tendon injury and repair model in vivo and iEV-macrophage and iEV-tendon cell coculture models in vitro. Results showed that iEVs promoted tendon anti-inflammatory gene expression and reduced mononuclear cell accumulation to the injury site in the remodeling phase of healing. iEVs also increased collagen deposition in the injury center and promoted tendon structural recovery. Accordingly, mice treated with iEVs showed less peritendinous scar formation, much lower incidence of postoperative tendon gap or rupture, and faster functional recovery compared to untreated mice. Further in vitro studies revealed that iEVs both inhibited macrophage M1 polarization and increased tendon cell proliferation and collagen production. The iEV effects were partially mediated by miR-147-3p, which blocked the toll-like receptor 4/NF-κB signaling pathway that activated the M1 phenotype of macrophages. The combined results demonstrate that iEVs are a promising therapeutic agent that can enhance tendon repair by attenuating inflammation and promoting intrinsic healing.


Subject(s)
Achilles Tendon , Extracellular Vesicles , Mesenchymal Stem Cells , Tendon Injuries , Humans , Achilles Tendon/injuries , Mesenchymal Stem Cells/metabolism , Wound Healing/physiology , Tendon Injuries/surgery , Extracellular Vesicles/metabolism , Collagen , Inflammation
3.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778262

ABSTRACT

Achilles tendon rupture is a common sports-related tendon injury. Even with advanced clinical treatments, many patients suffer from long-term pain and reduced function. These unsatisfactory outcomes result primarily from an imbalanced injury response with excessive inflammation and inadequate regeneration. Prior studies showed that extracellular vesicles from inflammation-primed adipose-derived stem cells (iEVs) can attenuate inflammation in the early phase of tendon healing. However, the effect of iEVs on tendon inflammation and regeneration in the later phases of tendon healing and the underlying mechanism remain to be determined. Accordingly, this study investigated the mechanistic roles of iEVs in regulating tendon response to injury using a mouse Achilles tendon injury and repair model in vivo and iEV-macrophage and iEV-tendon cell co-culture models in vitro. Results showed that iEVs promoted tendon anti-inflammatory gene expression and reduced mononuclear cell infiltration in the remodeling phase of tendon healing. iEVs also increased injury site collagen deposition and promoted tendon structural recovery. As such, mice treated with iEVs showed less peritendinous scar formation, much lower incidence of postoperative tendon gap or rupture, and faster functional recovery compared to untreated mice. Further in vitro study revealed that iEVs both inhibited macrophage inflammatory response and increased tendon cell proliferation and collagen production. The iEV effects were partially mediated by miR-147-3p, which blocks the toll-like receptor 4/NF-κB signaling pathway that activates macrophage M1 polarization. The combined results demonstrated that iEVs are a promising therapeutic agent, which can enhance tendon repair by attenuating inflammation and promoting intrinsic healing. Significance statement: Using a clinically relevant mouse Achilles tendon injury and repair model, this study revealed that iEVs, a biological product generated from inflammation-primed adipose-derived stem cells, can directly target both macrophages and tendon cells and enhance tendon structural and functional recovery by limiting inflammation and promoting intrinsic healing. Results further identified miR-147-3p as one of the active components of iEVs that modulate macrophage inflammatory response by inhibiting toll-like receptor 4/NF-κB signaling pathway. These promising findings paved the road toward clinical application of iEVs in the treatment of tendon injury and other related disorders.

4.
J Orthop Res ; 41(2): 278-289, 2023 02.
Article in English | MEDLINE | ID: mdl-35488732

ABSTRACT

Enriched in glycolytic enzymes, paucicellular and hypovascular intrasynovial flexor tendons fail to mount an effective healing response after injury and repair. In contrast, well-vascularized extrasynovial flexor tendons possess high levels of oxidative phosphorylation (OXPHOS) enzymes and have a markedly improved healing capacity. This study was designed to compare the metabolic profiles of the two types of tendons and to evaluate the impact of metabolic reprogramming on early intrasynovial tendon healing in a clinically relevant canine model. Results showed that healthy intrasynovial tendons expressed higher levels of PDK1 and GAPDH and lower levels of SCX and IGF1 than did extrasynovial tendons. PDK1 encodes a subtype of pyruvate dehydrogenase kinase (PDK) that inhibits OXPHOS. Consistently, ATP production via glycolysis was favored in intrasynovial tendon cells whereas OXPHOS was the preferred pathway in extrasynovial tendon cells. Inhibition of glycolysis in vitro increased SCX expression in intrasynovial tendon cells. Therefore, dichloroacetate (DCA), a PDK1 inhibitor, was used in vivo to shift intrasynovial tendon ATP production from glycolysis to OXPHOS. Oral DCA administration reduced serum lactate concentration and increased acetyl-CoA content in repaired intrasynovial tendons and led to reduced TLR4 and IL1B and increased IGF1, SCX, and TGFB3 expressions in treated intrasynovial tendons compared to controls. Immunohistochemistry staining with anti-Ki67 and anti-CD31 antibodies revealed marked increases in cellularity and neovascularization in treated intrasynovial tendons. Clinical significance: The findings of this experiment indicate that improved gene expression and histological outcomes can be achieved by regulating glucose metabolism in the early stages following intrasynovial tendon repair.


Subject(s)
Plastic Surgery Procedures , Tendons , Animals , Dogs , Adenosine Triphosphate/metabolism , Plastic Surgery Procedures/veterinary , Tendons/physiology , Tendons/surgery
5.
Opt Express ; 26(12): 15693-15704, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114827

ABSTRACT

Optically pumped molecular gas amplifiers having a gain medium contained in a hollow-core optical fiber are investigated with numerical modeling to understand the primary physical processes that affect amplifier output and efficiency. A comparison of computational results with experimental measurements of incident pump, absorbed pump, and emitted mid-IR from a pulsed, acetylene-filled, hollow-core fiber amplifier [ Opt. Exp.25, 13351 (2017)] is used to explore the effects of various physical processes on pulsed amplifier operation. Single frequency, one-dimensional, time-dependent models are shown to align with experimentally measured lasing thresholds and ratios of absorbed pump to emitted laser energy but significantly over predict the amount of incident pump energy that is absorbed. A two-dimensional, time-dependent model that assumes Gaussian spectral and radial intensity profiles for the pump is developed and shows an improved ability to capture pump absorption. Results indicate that 1D, time-dependent models have utility in guiding experiments but the significant influence of the pump and laser propagation modes and the pump spectral characteristics on efficiency, threshold, and signal output must be explicitly included in high-fidelity high-power modeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...